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GENERAL INTRODUCTION 

Explanation of Dissertation Format 

This dissertation is written in an alternate thesis format, as 

permitted by the Graduate College. It Includes experimental objective, a 

background and literature review, a rationale, an experimental part, a 

discussion, a summary, a list of references cited in the background and 

literature review and in the discussion. The experimental part has five 

sections. Sections I and II represent two research papers already 

published, sections III and V represent two manuscripts submitted for 

publication in the Brain Research, and section IV is a part of a published 

research paper. 

The dissertation contains a large part of the experimental results 

obtained by the author during the course of his graduate study under the 

supervision of Dr. Mirjana Randié. 

Research Objective 

Anatomical and physiological data have provided a detailed description 

of the organization of afferent projections to the spinal cord and of the 

second order neurons in the dorsal horn. However, the identity of the 

neurotransmitter and neuromodulator substances at primary afferent 

synapses, and cellular mechanisms of their pre- and postsynaptic actions in 

the dorsal horn are still largely unknown. The objective of this research 

was to examine basal and depolarization-induced release of nine endogenous 
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amino acids, Including glutamate and aspartate, from the spinal dorsal 

horn. The specific purpose of the conducted experiments was to study the 

characteristics of amino acid release in response to selective activation 

(electrical, chemical) of either primary afferent A- or C- fibers, the 

origin of the released compounds by using capsaicin as a probe of primary 

afferent C-fiber function, and the regulation of their basal and evoked 

release by peptides. The possibility of modulation of endogenous amino 

acids release by tachykinins (substance P and neurokinin A), calcitonin 

gene-related peptide, opioid peptides, and by the activation of B subtype 

of 7-aminobutyric receptors, has been Investigated. The experiments used 

spinal cord slice-dorsal root ganglion in vitro preparation, high 

performance liquid chromatography with fluorlmetrlc detection and 

intracellular recording from dorsal horn neurons. 

Background and Literature Review 

This section briefly outlines the projections of the primary afferent 

fibers, the cytoarchitectonic organization and the principal 

neurotransmitter systems in the spinal dorsal horn. The objective is to 

provide background information for the study of chemical neurotransmission 

in the spinal dorsal horn. 

The spinal dorsal horn - structural and functional organization 

Primary sensory neurons, primary afferent fibers and sensory receptors 

Primary sensory neurons, located in the dorsal root ganglia (DRG), 

mediate the transfer of sensory Information from the peripheral receptors 
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(cutaneous, muscle, visceral) to the spinal cord. The synaptic contacts 

formed by this heterogenous population of neurons with the dendrites or 

perikarya in the spinal cord represent the first synapse in the central 

nervous system (CMS) at which sensory information is processed and 

integrated. The major histological features of the cellular elements in 

the DRG were described by Ramôn y Cajal (1909) at the beginning of this 

century, and have been reviewed often since (Ranson, 1912; Lieberman, 1976; 

Tennyson and Gershon, 1984). Primary sensory neurons have been classified 

with regard to their perikaryal size, duration of somatic action potential, 

conduction velocity of nerve fibers, sensory modality, neurochemistry, 

chemosensitivity and distribution of cellular organelles (Yoshida et al., 

1978; Yoshida and Matsuda, 1979 ; Belmonte and Gallego, 1983 ; Rambourg et 

al., 1983; Harper and Lawson, 1985a,b; Rose et al., 1986; Traub and 

Mendel, 1988; Sugiura et al., 1988). Two principal groups of neurons have 

been described in the rat DRG. Type A neurons are large cells (30-70 fim in 

diameter) that stain lightly with basic dyes or silver salts. Type B 

neurons are smaller (25-30 /iM in diameter), having darkly stained perikarya 

(Andres, 1961). In L5 and L6 rat dorsal root ganglia, about 30 to 40% of 

the neurons are type A (Andres, 1961). Although the justification for this 

classification has been questioned (Kawamura and Dyck, 1978; Hato et al., 

1980), the morphological heterogeneity is paralleled by a distinct 

functional heterogeneity. Large A neurons have short-duration action 

potentials (0.49-1.35 ms at the base) (Harper and Lawson, 1985) and give 

off large-diameter myelinated axons that conduct in the Aq (30-50 m/s) or 

A/3 (14-30 m/s) range. Small, type B neurons, are characterized by long-

duration action potentials (0.5-8.0 ms at the base) and they are associated 
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with small-diameter unmyelinated or myelinated axons, that conduct in the 

C-fiber (<1.4 m/s) or A5 range (2.2-8.0 m/s). The existence of an 

intermediate-sized group of cells has been suggested, associated with k S -

fibers (Harper and Lawson, 1985). 

The axons of primary sensory neurons divide into two branches that 

project in opposite directions. One branch innervates the sensory 

receptors and contributes to the peripheral nerve. The other, centrally 

directed branch, a primary afferent fiber, projects to the spinal cord via 

the dorsal roots (DR). The primary afferent fibers are classified on the 

basis of the presence of myelin, diameter, conduction velocity and sensory 

modality. The afferent fibers from the skin are designated as: Ao, Afi, AS 

and C. The Aa and A/8 fibers are associated with type A sensory neurons. 

They constitute a group of large, myelinated, fast-conducting cutaneous 

afferents that enter the spinal cord via the medial division of the dorsal 

roots and project predominantly to laminae III to V (Brown 1981; Woolf, 

1987). The terminals of these fibers generally contain round vesicles, 

make asymmetric synapses mainly with dendrites and spines of the second 

order dorsal horn neurons, and are postsynaptic to intrinsic spinal neurons 

(Réthelyi, 1983). 

A6- and C-fibers are small-diameter, myelinated and unmyelinated 

fibers, respectively, associated with small type B or intermediate size 

cells in the DRG. They enter the cord through the lateral division of the 

dorsal roots and by way of Lissauer's tract, and project mainly to laminae 

1,11, and V, and to the region around the central canal (Christensen and 

Perl., 1970; Light and Perl, 1979a; Honda and Perl, 1985; McMahon and Wall, 

1985; Willis, 1985; Chung, 1987). These fibers terminate in synaptic 
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glomeruli. They establish asymmetric axodendritic synapses and are 

postsynaptic to axonal and dendritic endings that contain flattened or 

pleomorphic vesicles (Maxwell and Réthelyi, 1987). 

It is a general rule that the fast-conducting myelinated Aa,p units 

have a low threshold of activation. Accordingly, these afferents innervate 

a variety of low-threshold mechanoreceptors. The slow-conducting AS and C 

fibers are associated with high-threshold non-nociceptive and nociceptive 

function. The variability in the conduction velocity among the slow 

conducting units is considerable, with the tendency of the highest-

threshold units to have the lowest conduction velocity. 

Â different nomenclature has been used for the afferents from the 

muscle: Group I (large myelinated). Group II (small myelinated). Group III 

(smaller myelinated) and Group IV (unmyelinated). Tables 1 and 2 present 

the alphabetical and numerical nomenclature for cutaneous and muscle 

afferents, and their respective diameters and conduction velocities. 

It is necessary to consider two other recent findings in relation to 

primary afferent transmission. First, the possibility of synaptic 

modulation of sensory information in the ORG has been raised by the 

electron microscopic demonstration of the synaptic terminals and by the 

reported EFSPs in cat DRG (Kayahara et al., 1981; Miletié and Lu, 1988). 

Although the function of such putative synapses is as yet unknown, this 

finding implies that processing and modulation of afferent information may 

occur prior to entering the spinal cord. In addition, the concept of 

afferent transmission has further been complicated by the finding of 

afferent fibers in the ventral roots (Coggeshall et al., 1974, 1975; 

Maynard et al., 1977; Mawe et al., 1984). These fibers seem to emanate 
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Table 1. Types of peripheral receptors and afferent fibers active in 
various sensations 

Receptor Fiber Modality 
type group 

Hair follicle A/9 Tactile 
Meissner corpuscle A0 Tactile 
Ruffinl corpuscle A/9 Tactile 
Merkel receptor Afi Tactile 
Pacinian corpuscle hp Tactile 
Free nerve ending A« ,C Pain and temperature sense 
Muscle spindle Aa,A/9, Proprioception 
Joint receptors A/9 Extremes of joint angle; 

joint capsule pressure 

Table 2. Fiber diameters and conduction velocities of cutaneous and muscle 
afferent groups 

Fiber Conduction 
Muscle Cutaneous diameter velocity 
nerve nerve (pm) (m/s) 

I 13-20 80-120 

II A0 6-12 35-75 

III AS 1-5 5-30 

IV" C" 0.2-1.5 0.5-2.0 

•Unmyelinated 
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from cutaneous, muscular and visceral receptors Including nociceptors 

(Clifton et al., 1976). Their course and mode of termination is largely 

unknown. 

Primary afferent fibers of cutaneous mechanoreceptors The 

mechanoreceptlve input to the dorsal horn originates from the low-

threshold, sensitive mechanoreceptors of the skin and is mediated by large 

and small myelinated kfi and A5 fibers, respectively (Table 1, 2) (Brown and 

Iggo, 1967). In some species, but not in humans, additional input is 

provided by unmyelinated C- fibers (Iggo, 1960). The large A)9 fibers, that 

are connected to sensitive mechanoreceptors, distribute their axons to some 

or all of laminae III to V, and the dorsal part of laminae VI. The small 

kS fibers that convey Information from the hair-follicle mechanoreceptors 

terminate predominantly in lamina III, although some synaptic boutons can 

be found in laminae II and IV (Light and Perl, 1979b). By intracellular 

iontophoretic application of an immunocytochemical marker, Suglura et al. 

(1986), were able to visualize central termination of functionally 

identified cutaneous C-fibers in the superficial dorsal horn. In addition, 

the type of cutaneous drive to the neurons in inner substantia gelatinosa 

(lamina II), point to this region as a likely projection area of C-fiber 

mechanoreceptlve afferents (Light and Perl, 1979b). 

Two types of dorsal horn neurons have been described based on their 

mechanoreceptlve input. Neurons with an exclusively mechanoreceptlve input 

from the skin are designated as class 1, low-threshold or lamina 4-type. 

Neurons that receive convergent excitatory input from several types of 

cutaneous receptors (i.e., mechanoreceptors, nociceptors and 
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thermoreceptors) are known as class 2, wide dynamic range or lamina-5 type. 

Mechanoreceptive neurons are located mainly In laminae III and IV and 

give off long axons through dorsal column pathway and spinocervlcal, 

spinoreticular and spinothalamic tracts. The function of the C-

mechanoreceptor-driven "slow brush neurons" in substantia gelatinosa is not 

known (Light et al., 1979). 

Primary afferent fibers of cutaneous nociceptors Nociceptive 

information from the skin enters the spinal dorsal horn via small 

myelinated A5- fibers (mechanonociceptors) and unmyelinated C-flbers 

(polymodal nociceptors). A&-fibers terminate mainly within the laminae I 

(the marginal zone), outer portion of laminae II (IIo) and send collaterals 

to lamina V and the zone around the central canal (Chrlstensen and Perl, 

1970; Light and Perl, 1979; Honda and Lee, 1985; Willis, 1985). C-fibers 

project to lamina II (the substantia gelatinosa), particularly to IIo 

(Light and Perl, 1979; Sugiura et al., 1986). 

The majority of the neurons in lamina I of the dorsal horn respond to 

peripheral nociceptive stimuli, and it is generally accepted that the flat 

and relatively large marginal cells (the Waldeyer cells) are nocireceptive. 

Chrlstensen and Perl (1970) have defined this region as a specialized 

sensory nucleus containing neurons important for nociception and for 

detection of thermal changes in the skin. Although some neurons in this 

lamina receive primary afferent input exclusively from nociceptors, others 

receive convergent input from a variety of peripheral receptors. (Willis et 

al., 1974; Price and Browe, 1975; Cervero et al., 1976; Price et al., 

1976). Early studies from human material (Kuru, 1949) and studies in the 

cat (Willis and Coggeshall, 1978; Cervero et al., 1979; Widberg and 
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BlomqulsC, 1984) demonstrated that a proportion of lamina I neurons send 

their axons rostrally via the spinothalamic, spinoreticular and 

spinomesencephalic tracts. These, projection neurons have been 

physiologically well characterized (Dilly et al., 1968; Willis et al., 

1974; Giesler et al., 1976; Price et al., 1976; Hylden et al., 1989) and 

implicated in the transmission of sensory information from the skin that 

will eventually lead to the experience of cutaneous pain. 

Primary afferent fibers of cutaneous thermoreceptors Information 

from cutaneous thermoreceptors (cold and warm receptors) is conveyed via 

small AS- and C-fibers (Iggo, 1969). The distribution of terminals of this 

class of primary afferents within the dorsal horn is largely unknown. 

Whereas some neurons, i.e. "cold units", located in the superficial dorsal 

horn seem to be driven exclusively by thermoreceptors, other neurons in the 

same region exhibit a great degree of convergence of different modalities. 

Such convergence has been demonstrated for thermo- and nociceptors 

(Christensen and Perl, 1970; Hellon and Misra, 1973). 

Primary afferent fibers of muscle receptors Primary afferent 

fibers originating in the muscle convey proprioceptive information to the 

spinal cord. These include: group la axons (Aa) from the primary endings 

in muscle spindles, group II axons (Afi) from secondary endings in the 

muscle spindle, and group lb axons (Aa) from Golgi tendon organs. Group 

la axon collaterals project mainly to lamina VI and laminae VII and IX (the 

mo to meuronal pool). Group II axons terminate in laminae IV to VII and 

those of group lb send collaterals to a wide area between laminae V and VII 

(Brown, 1981). 
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Primary afferent fibers convevinp Information from visceral receptors 

Another source of afferent Input to dorsal horn neurons, especially In 

thoracic and sacral regions, is provided by central endings of visceral 

afferent fibers that originate from sympathetic and parasympathetic 

neurons. Visceral afferents are of AS and C fiber type. They terminate 

mostly in laminae I and V of the dorsal horn although synaptic boutons are 

occasionally found in the substantia gelatinosa and lamina III (Morgan et 

al., 1981), Although these fibers represent only a small proportion of the 

total afferent inflow to the spinal cord they can activate a large number 

of neurons in the spinal cord due to extensive functional divergence 

(Cervero, 1983a, 1984). For instance, destruction of almost 95% of 

afferent C fibers with neurotoxin capsaicin reduces the number of dorsal 

horn neurons driven by the surviving C fibers by only 50% (Cervero, 1984). 

Dorsal horn neurons can be classified into two groups depending on the 

presence or absence of an excitatory visceral input. Somatic neurons are 

driven by mechanoreceptive input from their somatic fields and lack 

visceral input. They are distributed mainly throughout laminae II, III and 

IV. The second category are viscerosomatic neurons, that receive both 

somatic and visceral Inputs (Pomeranz et al., 1968; Foreman and Ohata, 

1980; Cervero, 1982, 1983a,b). These neurons are predominantly located in 

laminae I and V and also in the ventral horn (Cervero, 1986). Therefore, 

visceral and somatic pathways converge at the level of the spinal 

viscerosomatic neurons and project via somatosensory pathways, including 

spinothalamic and spinoreticular tracts (Cervero, 1983b). These findings 

present a strong experimental support for the "convergence-projection" 

theory of the referred visceral pain (Ruch, 1974). 
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Cvtoarchltectonlc organization of the dorsal horn: The Rexed's scheme 

The Rexed's scheme (1952, 1954) was based on the study of neuronal 

somata from 100 /iM-thick Nlssl-stalned sections of the spinal cord from 

kittens and adult cats. This scheme was cytoarchltectonic, concerned with 

shapes, sizes, densities and distribution of neuronal somata in the spinal 

cord, without taking Into consideration dendritic trees or axonal 

projections and terminations. Rexed described nine cell layers (laminae) 

in the gray matter, and a region around the central canal (lamina X). The 

upper six laminae comprise the spinal dorsal horn. 

Lamina I (Marginal zone) Lamina I was described originally as a 

thin (12-20 urn) veil of gray substance, forming the dorsal-most part and 

lateral side of the spinal gray matter (Rexed, 1952). Neurons in the 

marginal zone vary in size from small, to medium and large. Although large 

neurons comprise only a small fraction of the total number of cells in 

lamina I, these so called marginal cells have been characterized the best 

(Waldeyer, 1888; Ramon y Cajal, 1909). Their somata are large (10-15 x 30-

50 /iM) and located between the overlying white matter and the underlying 

lamina II (Waldeyer, 1888; Rexed, 1952). Marginal cells' dendrites are 

largely confined to lamina I. Their dendritic domains resemble a flattened 

disc with elliptic elongation in the rostro-caudal direction (500-1400 fim) 

(Ramon y Cajal, 1909; Scheibel and Scheibel, 1968; Light et al., 1979). 

Marginal cells are either local circuit or projection neurons. Two 

destinations of axonal projections of marginal cells have been proposed. 

The distant sites Include the thalamus, via the spinothalamic tract (Willis 

et al., 1974; Trevino and Carstens, 1975; Glesler et al., 1979), the 

lateral cervical nucleus (Craig, 1978; Brown et al., 1980) and the midbrain 
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reticular formation (Trevlno, 1976; Molenaar and Kuypers, 1978; Swett et 

al,, 1985). As a part of proprlosplnal pathways, axons of marginal cells 

travel to other segments of the spinal cord (Burton and Loewy, 1976). 

In terms of their functional properties, three groups of lamina I 

neurons have been described: noclreceptlve specific neurons (NS), wide 

dynamic range (WDR, which respond both to nociceptors and low threshold 

mechanoreceptors) and thermoreceptlve neurons that respond to warming and 

cooling. 

Lamina II (substantia gelatlnosa of Rolando) Due to the absence of 

myelinated fibers and the presence of densely-packed and mostly radially 

oriented neuronal somata, this lamina appears as an easily distinguishable 

pale band, Just ventral to the marginal zone (Ramon y Cajal, 1909; Rexed, 

1952,1954). On the basis of the dendritic arborizations and axonal 

projections of Its neurons and afferent Inputs, lamina II Is subdivided 

Into two regions, an outer region (LIIo: 30-40 fxm thick) and an Inner 

region (LIIl: 40-50 /im thick) (Rexed, 1952; Gobel, 1979; Ralston and 

Ralston, 1979). 

Morphologically, two types of cells are present In lamina II (Beal and 

Cooper, 1978; Price et al., 1979). The larger (16-22 pm, Bennett et al., 

1980), stalked cells (border cells or limiting cells), are mostly found 

along the outer edge of lamina II. Their dendritic trees are oriented 

ventrally, mostly confined to lamina II, and only occasionally project 

dorsally and enter lamina I. The axons of these cells project into lamina 

I (Gobel, 1975,1978; Suglura, 1975; Beal and Cooper, 1978). The smaller. 

Islet cells (5-10 x 5-10 /im), are found mainly in LIIl. Their dendritic 

trees are oriented primarily longitudinally and spread throughout laminae 
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II and III (Schelbel and Scheibel, 1968; Suglura, 1975). 

Functionally, the outer part of this lamina (Lllo) contains either NS 

or WDR neurons, whereas the inner part (Llli) neurons respond only to 

Innocuous stimuli. 

Together, Rexed's laminae I and II, comprise the superficial dorsal 

horn. This is the main area of termination of small myelinated (AS) and 

unmyelinated (C) fibers from the skin, muscle and viscera (Christensen and 

Perl, 1970; Light and Perl, 1979; Cervero, 1983; Craig and Kniffki, 1985). 

Because of the nociceptive nature of the fine afferents that make the first 

synaptic relay in this region of the spinal cord gray matter, superficial 

dorsal horn has been considered an important area for transmission and 

modulation of the nociceptive information. Superficial dorsal horn 

contains more than a dozen of putative peptidergic neurotransmitters (e.g. 

SP-, NKA-, VAS-, OXY-, CCK-, SRIF-, VIP-, NT-, ENK-, NPY-, DYN-, GAL-, 

CGRP-, and TRH-LI). 

Lamina III Lamina III is a broad band bordered medially by the 

white matter and laterally by the ventral bend of laminae I and II. The 

lighter appearance of this lamina in cytoarchitectonic stains is a result 

of the less dense packing of nerve cells. The neuronal somata are larger 

than those of lamina II (7-9 x 10-12 /im), spindle-shaped and are oriented 

vertically to the surface of the lamina. The dendritic pattern of the 

lamina III cells is relatively complex. Long dendrites extending through 

laminae I-IV and to the outer surface of the dorsal horn have been 

described (Mannen and Sugiura, 1976; Brown, 1981). Axons of lamina III 

cells take part in propriospinal pathways (Szentagothai, 1964; Schelbel and 

Scheibel, 1968). These axons travel widely throughout the gray matter of 
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the dorsal horn before passing into the white matter (Matsushita, 

1969,1970). Upon returning to the gray matter, the axons project mainly to 

lamina II and III (Szentagothai, 1964). Some of the axons form synaptic 

Junctions outside of this area, and the system may not be as closed as 

Szentagothai first proposed. 

Lamina III neurons are driven by low-threshold mechanoreceptive fibers 

(A/9) and are functionally regarded as inhibitory interneurons. The 

peptidergic content of these neurons includes SP-, ENK-, NT-, and TRH-LI. 

Lamina IV Lamina IV is a relatively thick layer that extends 

straight across the dorsal horn. It is bordered medially with the white 

matter of the dorsal columns and laterally with the ventro-lateral bend of 

laminae I to III. One of the most striking features of this lamina is its 

neuronal heterogeneity (Rexed, 1952; Brown, 1981). The nerve cells of 

varying sizes (8 x 11 to 35 x 45 /im) and shapes are distributed relatively 

sparsely within a dense rostro-caudally oriented nerve fiber network. 

Although outnumbered by the smaller cells, the large, star-shaped neurons 

are the most prominent cells in the lamina IV. These cells have long, 

spine-studded dendrites that spread in all directions (Ramon y Cajal, 

1909). The importance of the large cells in lamina IV (and V) is that 

their dorsally-directed dendrites penetrate into substantia gelatinosa and 

may represent the principal output from this still functionally little 

understood region (Szentàgothai, 1964). 

Axons of lamina IV neurons project cranially via spinothalamic and 

spinocervical pathways, or contribute to propriospinal systems 

(Szentàgothai, 1964; Réthelyi and Szentàgothai, 1973, Willis and 

Coggeshall, 1978). 
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Lamina V This lamina occupies the narrowest part of the dorsal 

horn gray matter known as the neck of the dorsal horn. Medial part of this 

lamina is bordered distinctly by the dorsal funiculus, while its lateral 

border is obscure due to a mesh of passing myelinated fibers (Willis and 

Coggeshall, 1978). 

The cell bodies of this lamina are of varying sizes (8x10 to 30x45 /im) 

and shapes, and cytoarchitectonically virtually Indistinguishable from 

lamina IV cells (Rexed, 1952). Based on the arborization of their 

dendritic trees, a role for these neurons in conveying signals from 

substantia gelatinosa has been proposed. Axonal organization and 

projections of lamina V neurons are similar to laminae IV cells, i.e., 

their axons contribute to spinothalamic, splnocervical and proprlospinal 

pathways (Coggeshall, 1978). 

Lamina V is a major projection area of C afferents from the viscera, 

group IV fibers from the muscle and of AS fibers from Ipsi- and 

contralateral skin nociceptors (Light and Perl, 1979; Craig and Mense, 

1983; Cervero and Connel, 1984). At least eight peptides have been 

demonstrated in this lamina: SP-, CCK-, SRIF-, ENK-, DYN-, NPY-, CRF- and 

GAL-LI. 

Organization of dorsal horn neurotransmitter systems 

The dorsal hoim of the spinal cord is the site of the first synapse In 

the central nervous system where peripheral somatic or visceral information 

is processed and integrated. As its function implies, the neural structure 

of the spinal dorsal horn is complex and rich in a variety of 

neurotransmitters and neuromodulators. Considerable efforts have been 
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directed towards establishing the Identity of these neuroactlve substances, 

their principal neuronal or non-neuronal sources In the dorsal horn, and 

their cellular mechanisms of actions. It Is now clear that there Is a 

precise laminar distribution of the neuroactlve substances In the spinal 

cord, and that this distribution is dependent on the segmental level 

assayed. 

A growing list of putative neuromediators In the spinal dorsal horn 

Includes excitatory and Inhibitory amino acids, bloamlnes, acetylcholine, 

purines and a number of peptides. It is noteworthy that many of these 

chemical mediators are particularly represented in the superficial laminae 

of the dorsal horn (Laminae I to III). Distribution and coexistence of 

some peptides in the primary sensory neurons, and axonal terminations of 

these neurons in the spinal dorsal horn are summarized in Table 3. 

All putative messengers of chemical neurotransmission in the spinal 

dorsal horn derive from three principal neuronal sources. These are: 

primary afferent fibers, spinal interneurons and the descending pathways. 

They are briefly reviewed in this part of the thesis, with an emphasis on 

the experimental evidence for excitatory amino acids and neuropeptides as 

neurotransmitter or neuromodulator candidates of the primary afferent 

fibers. 

Excitatory amino acids (EAA): L-elutamate and L-aspartate 

Dicarboxyllc amino acids, glutamate and aspartate, are the principal 

excitatory neurotransmitter candidates in the central nervous system, 

including spinal dorsal horn (Mayer and Westbrook, 1987; Evans, 1989; 

Rustionl and Weinberg, 1990). Available experimental evidence strongly 

supports the role for glutamate as a fast excitatory neurotransmitter of 
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Table 3. Neuropeptides in subsets of mammalian dorsal root ganglion 
neurons (Jessell and Dodd, 1989) 

Neuropeptide % DRG neurons Lamina 
termination 

Coexistence 
(rat) 

Substance P (SF) 20 

Neurokinin A 
(NKA) 

Cholecystokinin 
(CCK) 

Calcitonin gene-
related peptide 
(CGRP) 

Vasoactive 
intestinal 
polypeptide 
(VIP) 

Somatostatin 
(SS) 

20 

20 

30 

5 (visceral) 

8-10 

Dynorphin (DYN) 5 (visceral) 

Enkephalin (ENK) 5 (visceral) 

Corticotropin- ? 
releasing factor 

Arg-vasopressin 50-60 
(VASO) 

Oxytocin 50-60 

Gastrin- 10 
releasing 
peptide (GRP) 

Angiotensin II ? 

Galanin 10 

I, IIo 

I, IIo 

I, IIo 

I, IIo 

IIo 

I 

I 

I, IIo 

? 

? 

I, IIo 

IIo 

I, IIo 

CCK, CGRP, NKA, 
VASO 

CCK, CGRP, SP, 
VASO, GRP 

SP, CGRP, SK, 
VASO 

SP, NKA, CCK, 
VASO 

VASO 

? 

? 

? 

most other 
peptide-

containing DRG 
neurons 

SP 

the primary afferent fibers. Biochemical analyses in the spinal cord have 

demonstrated higher concentration of glutamate in the dorsal roots, as 
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compared to the ventral roots (Graham et al., 1967; Duggan and Johnston, 

1970; Roberts et al., 1973), and receptor autoradiographic studies have 

shown a dense band of glutamate-binding sites in the superficial spinal 

dorsal horn (Greenamyre et al., 1984,1985). By using a glutaraldehyde-

conjugated antibody for glutamate, it has been demonstrated that about 70% 

of both large and small dorsal root ganglion neurons are labelled for 

glutamate (Duce and Keen, 1983; Kvamme, 1983; Cangro et al., 1985; Wanaka 

et al., 1987; Battaglia and Rustioni, 1988), and consistent with this, 

glutamate-IR has been detected within a proportion of myelinated and 

unmyelinated primary afferent axons and terminals in the superficial 

laminae (I and II) of the dorsal horn (Duce and Keen, 1983; Miller et al., 

1988; Westlund et al., 1989). Glutamate is synthesized in the brain from 

several precursors, including glucose, ornithine and glutamine (Fonnum, 

1984), and the enzymes involved have been demonstrated in some ORG neurons 

with immunocytochemical methods (Cangro et al., 1985; Inagaki et al., 1986; 

Battaglia and Rustioni, 1988;). Ca^^-dependent release of glutamate from 

electrically stimulated primary afferent fibers has been demonstrated both 

in vivo (Roberts et al., 1973; Roberts, 1974a,b) and in vitro (Kawagoe et 

al., 1986; Kangrga and Randié, 1990; Kangrga et al., 1990a,b). Glutamate 

has been demonstrated in vesicles within the nerve terminals (Nlcholls and 

Sihra, 1986) and glutamate-accumulating vesicles were isolated from the 

central neurons (Naito and Ueda, 1983). 

Electrophysiological studies provided first evidence for glutamate as 

an excitatory neurotransmitter candidate of the primary afferents. 

Glutamate excites and depolarizes almost all spinal dorsal horn neurons in 

vivo (Curtis et al., 1960; Galindo et al., 1967; Zieglg&nsberger and Pull, 
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1973) and a proportion of dorsal horn neurons in vitro (Salt and Hill, 

1983; Schneider and Perl, 1985, 1988). The reversal potential of 

glutamate-evoked depolarization is similar to that of the fast EPS? (Mayer 

and Westbrook, 1987; Gerber and Randi6, 1989; Yoshimura and Jessell, 1990). 

Schneider and Perl (1985) found that, in the rat spinal dorsal horn in 

vitro, about one third of the neurons in the superficial laminae of the 

dorsal horn were responsive to iontophoretic application of glutamate. As 

these neurons were synaptically driven by activated C-fibers, it was 

proposed that glutamate and/or aspartate may act as neurotransmitter(s) of 

the small DRG neurons. Although there is evidence that primary sensory 

neurons mediating different modalities of afferent information may use 

glutamate, or a similar compound as neurotransmitter, there are also 

reports of the ineffectiveness of some broad spectrum amino acid 

antagonists, such as kynurenic acid, to block the low-threshold (Schneider 

and Perl, 1985) and the high-threshold (Yoshimura and Jessell, 1990) dorsal 

root stimulation-evoked EPSP. 

Whereas glutamate has been long favored as a candidate 

neurotransmitter of the primary afferent fibers, anatomical and 

physiological evidence has recently emerged suggesting a neurotransmitter 

role for aspartate in various regions of the central nervous system 

(Collins et al,, 1983; Hicks et al., 1985; Bliss et al., 1986; Perschak and 

Cuenod, 1990), Including the rat medulla (Kihara et al., 1989; Kubo et al., 

1990) and the spinal dorsal horn (Skilling et al., 1988; Kangrga et al., 

1989, 1990a,b; Kangrga and Randié, 1990). Aspartate immunoreactivity has 

been demonstrated within both myelinated and unmyelinated primary afferent 

terminals in the spinal dorsal horn (Westlund et al., 1989a). It is of 
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considerable Interest that significantly more Immunolabeled aspartate than 

glutamate, Is present In small unmyelinated LA dorsal root axons In the 

superficial dorsal horn (Uestlund et al., 1989b), the finding Indicating 

that aspartate may be a neurotransmitter for a certain population of small 

primary afferent neurons. Attempts to demonstrate the presence of a 

synthesizing enzyme of aspartate, aspartate-aminotransferase, were 

unsuccessful (Cangro et al., 1985). 

Electrophysiological evidence for aspartate remains largely 

controversial. Whereas it has been demonstrated that aspartate does not 

depolarize cultured dorsal horn neurons (Jessell et al., 1986), about 85% 

of the acutely Isolated dorsal horn neurons (Murase et al., 1989), and 

neurons recorded from spinal dorsal horn slices (Gerber et al., 1989) 

respond to the local application of aspartate and N-methyl-D-aspartate. 

Both NMDA and non-NMDA receptors appear to participate in the fast (Dale 

and Roberts, 1985; Dale and Grlllner, 1986; Gerber and Randié, 1989a; 

Dickenson, 1990) and slow excitatory neurotransmission in the spinal dorsal 

horn (Gerber and Randié, 1989b). It has been suggested that aspartate is a 

putative endogenous ligand for NMDA receptors (Watkins and Evans, 1981). 

Based on their responsiveness to selective agonists and antagonists 

(Fig. 1), at least four distinct subtypes of lonotroplc glutamate receptors 

have been identified. N-methyl-D-aspartate (NMDA), kainic acid (KA) and a-

amlno-3-hydroxy-5-methyl-4-lsoxazole-proplonic acid (AMPA) are selective 

agonists for NMDA, kalnate and quisqualate receptor subtypes, respectively. 

The fourth subtype of receptor is defined by the antagonistic action of 2-
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ainlno-4-phosphonobutyrate (L-AP4). The present concept is that the 

multiple types of glutamate receptors are part of the same receptor-channel 

complex (Cull-Candy and Usowicz, 1987; Jahr and Stevens, 1987). 

NHDA is a selective agonist at NMDA receptor and its action can be 

effectively antagonized by D-2-amlno-5-phosphonovalerate (D-AP5 or D-APV), 

Electrophysiological studies of NMDA receptors and associated ion channels 

have revealed several distinct properties of this system: 1) The NMDA 

channels are blocked by Mg^^ in a voltage-dependent manner (Mayer et al., 

1984; Nowak et al., 1984; MacDermott et al., 1986); 2) The channels are 

permeable to Na*, K* and Ca^^ (Ascher et al., 1988; Ascher and Nowak, 1988); 

3) The channels exhibit multiple conductance states (Ascher et al., 1988; 

Ascher and Nowak, 1988); 4) Glycine potentiates the response to NMDA by 

acting at strychnine-insensitive allosteric site(Johnson and Ascher, 1987) 

and, 5) The receptor has a mlcromolar affinity constant for glutamate 

(Olverman et al., 1984). Thus, the activation of NMDA receptors can induce 

Ca^* influx through voltage-dependent Ca^^ channels activated by cell 

depolarization (Mayer and Miller, 1990). 

KA and AMPA receptors are classified as non-NMDA receptors. KA and 

AMPA activate relatively voltage-insensitive conductances (MacDonald and 

Porietis, 1982). Quinoxallnedlones (CNQX, DNQX and NBQX) are effective 

antagonists at non-NMDA receptors. Antagonist that can pharmacologically 

differentiate between KA and AMPA receptors has not been synthesized as 

yet. 

Binding of qulsqualic and ibotenic acid, to metabotroplc receptors 

that are linked to phospholipase C, results in a G protein-mediated 

phosphoinositlde hydrolysis and release of calcium from intracellular 
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stores. Thus, the activation of both ionotropic and metabotropic EAÂ 

receptors may result in elevation of [Ca^^ji. The increase in 

intracellular free [Ca^*] has been implicated in the activation of other 

second messenger systems and in the processes of long-term changes in 

synaptic transmission (Malenka et al., 1989), neuronal excitability and 

gene expression (Quirion, 1988; Szekely et al., 1989). 

A novel way of intercellular signaling by glutamate has been recently 

demonstrated in the cerebellum (Garthwaite et al., 1988). Glutamate, 

acting at NHDÂ receptor, can increase synthesis of cyclic GMP in the 

cerebellar neurons through a mechanism that involves formation of nitric 

oxide (NO) from the presynaptic structures, the granule cells being the 

likely generator of NO. The source of intracellular NO appears to be L-

arginlne. Thus, it appears that postsynaptic NMDA receptor activation may 

result in functional modification of the presynaptic terminal of the same 

cell, and that cyclic GMP may be of importance in mediating excitatory 

amino acid responses. The steps of the Ca^*-dependent synthesis of NO are 

well understood, and the enzyme inhibitors are available. Â sensitive 

enzymatic assay monitoring the conversion of (3H]arginine to (3H]cltruline, 

which occurs stoichlometrically with the formation of NO, revealed that NO 

Is widespread throughout the brain, being discretely localized in the 

neuronal and vascular elements (Bredt et al., 1990). Therefore, this 

pathway represents a promising site for presynaptic modulation of 

interneuronal signalling in the nervous system. 

ir-Amlnobutvric acid (GABk) The role of GABA as a principal 

inhibitory neurotransmitter in the mammalian central nervous system is more 

firmly established than for any other neurotransmitter (Krnjevié, 1974, 
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1987; Nistri, 1984). Neurons utilizing GABA as a neurotransmitter are 

distributed throughout the neuroaxis and exhibit different morphology. The 

GABAergic neurons figure prominently as interneurons, and they are 

instrumental in defining and confining the response properties not only of 

single neurons, but also of large neuronal circuits. Perhaps the best 

understood electrophysiological actions of GABA are those described in the 

hippocampus (Newberry and Nicoll, 1983,1984a,b,1985) and cerebral cortex 

(Connors et al., 1988; McCormick, 1989) where GABA has been implicated in 

the mediation of fast and slow inhibitory postsynaptic potentials. 

GABA acts in the nervous system at two clearly defined receptor 

subtypes, designated as GABA* and GABAg receptors (Bowery, 1980,1983). The 

distinction between these two receptor sites is based on numerous criteria 

including molecular, biochemical, pharmacological, and 

electrophysiological. GABAg, but not GABA* receptors, are present at high 

concentration in the superficial dorsal horn (Bowery et al., 1983, 1987; 

Price et al., 1984). The higher concentration of GABAg than GABA* 

receptor subtype is unusual in the central nervous system and is found only 

in several regions (i.e., spinal trigeminal tract, globus pallidus, 

temporal cortex; Bowery et al., 1987). GABAg receptors are thought to be 

situated predominantly, but not exclusively, in the presynaptic membrane 

(Bowery et al., 1980; Price et al., 1984). Functional GABAg receptors have 

been demonstrated in the membrane of primary sensory neurons (Dunlap, 

1981a,b; Dunlap and Fischbach, 1981; Desarmenien et al., 1984; Green and 

Cottrell, 1984; Dolphin and Scott, 1986), and electrophysiological and 

lesion studies suggest that a proportion of the primary sensory neurons 

exhibiting GABAg receptors, are small B neurons (Desarmenien et al., 1984; 
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Price et al., 1984). 

The structural requirements for GABAg receptor activation seem to be 

very stringent. To date, the only selective synthetic agonist at GABAg 

receptors is (/9-p-chlorophenyl)-GABA (baclofen, Fig. 2). Baclofen has a 

binding affinity for brain GABAg sites of about InM (similar to that of 

GABA) and has been a particularly useful tool for investigating the 

function of GABAg receptors in the nervous system (Bowery et al., 1980). 

Two optical isomers of baclofen exist, (•)-baclofen being approximately 

two orders of magnitude as potent as (+)-baclofen. Recently, three 

baclofen analogs with antagonistic properties at GABAg receptors have been 

synthesized. 2-Hydroxy-saclofen (2-OH-S) (Kerr et al., 1988), a sulfonic 

derivative, and phaclofen (Kerr et al., 1987), a phosphonic analog of 

baclofen, are both selective and competitive antagonists at GABAg 

receptors. 2-OH-S (pAj-S.O) appears to be more potent than phaclofen 

(PA2-4.O) in displacing GABAg binding in the nervous system. In addition 

more recently, the biochemical, electrophysiological and pharmacological 

properties of a new GABAg receptor blocker, CGP 35348, have been reported 

(Olpe et el., 1990) 

GABAg receptors are coupled to pertussis toxin (PTX)-sensitive 

guanoslne triphosphate (GTP)-binding proteins and their activation results 

in inhibition of adenylate cyclase activity in the brain slices (Woczlk and 

Neff, 1984; Hill et al., 1985; Karbon and Enna, 1985). This action does 

not appear to be linked to the changes in membrane conductance caused by 

GABAg receptors. 

The GABAa receptors are believed to be situated mainly on the 

postsynaptic membrane, where they directly control membrane chloride 
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channels. Binding of GABA to GABA^ receptors results in opening of CI" 

channels, presumably via allosteric modification of the receptor channel 

proteins (Olsen , 1982). GABA* recepor is a part of a larger molecular 

complex having, in addition to the GABA recognition site, three other 

ligand-binding sites. . Picrotoxin-like convulsants and bicuculline have 

antagonistic, while benzodiazepins and barbiturates have agonistic 

properties at this receptor. It has been demonstrated recently that in the 

acutely dissociated hippocampal neurons, the function of GABA^ receptor can 

be modulated at an intracellular site by phosphorylation of the receptor or 

a closely associated regulatory molecule (Chen et al., 1990). The GABA* 

receptor consists of two a- and two /3-subunits (ag^z) whose primary 

sequence and cDNA have been determined (Barnard et al., 1987). A 

functional GABA* receptor has been demonstrated in the Xenopus oocyte 

expression system. After injection of putative GABAy^ mRNA, large chloride 

conductance across the oocyte membrane was elicited by GABA. 

Biochemical (Graham and Apprison, 1969; Miyata and Otsuka, 1972) and 

immunocytochemical (McLaughlin et al., 1975; Barber et al., 1978, 1982; 

Kaduri et al., 1987; Magoul et al., 1987) studies of the mammalian spinal 

cord, including that of human spinal cord (Waldvogel et al., 1990), have 

shown that both GABA and the GABA synthesizing enzyme, glutamate 

decarboxylase (GAD), are present in the highest concentrations in the 

superficial laminae of the dorsal horn. The GABA-LI interneurons are 

evenly distributed throughout laminae I-III, the islet cells being the main 

neuronal source (Todd and McKenzie, 1989). The demonstration of GABA-LI 

(Kaduri et al., 1987; Magoul et al., 1987) and GAD-LI (McLaughlin et al., 

1975; Barber et al., 1978) terminals establishing axo-axonic contacts with 
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primary afferent fibers, and axo-dendritic and axosoraatic contacts with 

dorsal horn neurons, has provided a morphological evidence for the 

hypothesised role of GABA in pre- and postsynaptic inhibition in the dorsal 

horn. 

Much of the present knowledge of the function of GABAg receptors in 

the central neirvous system is based on experiments that used a selective 

agonist at these receptors, baclofen (Bowery et al., 1980, 1984, 1989). 

Baclofen inhibits neurotransmission at peripheral (Peng and Frank, 1989) 

and central excitatory and inhibitory synapses (Lanthorn and Cotman, 1981; 

Ault and Nadler, 1982; Inoue et al., 1985a; Howe et al., 1987; Connors et 

al., 1988), including the spinal cord (Pierau and Zimmermann, 1973; Fox et 

al., 1978; Jeftinija et al., 1986, 1987; Kangrga et al., 1987; Allerton et 

al., 1989). The primary mode of action of baclofen seems to be inhibition 

of neurotransmitter release, as demonstrated for excitatory amino acids 

(Potashner et al., 1979; Johnston et al., 1980; Collins et al., 1982; 

Huston et al., 1990), noradrenaline and dopamine (Bowery et al., 1980; 

Gray and Green, 1987) and peptides (Bowery, 1989). This presynaptic 

inhibitory action is believed to involve a reduction in calcium entry 

(Dunlap, 1981; Dunlap and Fischbach, 1981; Cherubini and North, 1984; 

Desarmenien et al., 1984; Heinemann et al., 1984; Schlichter et al., 1984; 

Dolphin and Scott, 1986; Green and Cottrell, 1988). In addition, by 

increasing conductance for potassium ions, baclofen exerts a direct 

hypetpolarizing effect on central (Gâwhiler and Brown, 1985; Inoue et al., 

1985b; Newberry and Nicoll, 1985; Howe et al., 1987; Lacey et al., 1988) 

and peripheral neurons (Newberry and Gilbert, 1990). 

First experimental evidence of the actions of baclofen in the spinal 
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cord supported its presynaptic site of action (Plerau and Zlmmermann, 

1973). lontophoretlcally or intravenously applied baclofen potently 

depresses spontaneous and evoked discharge of motoneurons and Interneurons 

(Plerau and Zlmmermann, 1973; Curtis et al., 1974, 1981, 1985; Fox et al., 

1978; Davles et al., 1981; Henry, 1982; Henry and Ben-Arl, 1982) In the 

cat spinal cord without altering their passive membrane properties or 

responsiveness to application of SP or glutamate (Plerau and Zlmmermann, 

1973; Fox et al., 1978). Consistent with this presumably presynaptic 

action of baclofen, are the findings that baclofen, or GABA acting at GABAg 

receptors, decrease the duration of Ca^^-dependent action potentials and 

inhibit voltage-dependent calcium currents In the primary sensory neurons 

(Dunlap, 1981; Dunlap and Fischbach, 1981; Cherublni and North, 1984; 

Desarmenien et al., 1984; Schlichter et al., 1984; Dolphin and Scott, 1986; 

Green and Cottrell, 1988). In addition, a direct hyperpolarizlng effect of 

baclofen on neurons in the dorsal horn (Jeftlnija et al., 1986; Kangrga et 

al., 1987; Allerton et al., 1989; Yoshimura and Jessell, 1989) and spinal 

motoneurons (Wang and Dun, 1990) has been reported. 

The two membrane effects attributed to GABAg receptor activation, 

increase in K* conductance and reduction in Ca^* conductance, have been 

associated with pre- and postsynaptic actions, respectively. Whilst it was 

possible that these two effects are linked, the recent evidence suggests 

that they are not. For Instance, the reduction in Ca^* conductance 

produced in some cells, such as sensory neurons giving rise to A6 and C 

primary afferents, is not attenuated by inhibitors of conductance. One 

possible explanation for the difference between the two mechanisms is that 

the channels have different locations, Ca^^ channel predominating at sites 
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of presynaptic terminals and K* channel coupling being more Important at 

somatic sites (Bowery, 1989). A second possibility, namely that different 

subtypes of GABAg receptors regulate the pre- and postsynaptic actions, has 

been recently proposed. Discriminative sensitivity of pre- and 

postsynaptic GABAg ionic mechanisms to pertussis toxin (PTX) (Dutar and 

Nicoll, 1988) and to a selective blocker at GABAg receptors, phaclofen, in 

the hippocampus (Dutar and Nicoll, 1988) and spinal cord (Kerr et al., 

1987; Wang and Dun, 1990) have been reported. One should bear in mind that 

all known actions of baclofen are pharmacological, and it remains to be 

determined what the physiological role of GABAg receptors is (Bowery, 

1989). 

Tachykinins: Substance P and neurokinin A The tachykinins 

comprise a family of closely related peptides that participate in 

regulation of diverse biological processes. The known mammalian 

tachykinins (Table 4) currently include substance P (SP), neurokinin A 

(NKA), neuropeptide K (NPK), neurokinin B (NKB) and neurokinin 7. SP and 

NKA are derived from the same preprotachykinln (PPT) gene, which explains 

the similar distribution of these two peptides in the CNS (Krause et al., 

1987). Differential splicing of the PPT gene gives rise to two mRNAs, qPPT 

mRNA and /3PPT mRNA. After translation, the aPPT-polypeptide opens up to 

release a 11-amino acid peptide, SP, whilst the ^PPT-polypeptide is cleaved 

to give both SP and NKA. Tachykinin precursor synthesis can be regulated 

at a number of levels (i.e. SP/NKA gene transcriptional activation, primary 

transcript splicing etc.). The regulation of the expression of multiple 

tachykinin peptides in the nervous system has not been well understood. 
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Table h. Amino acid sequences of mammalian tachykinins and calcitonin 
gene-related peptide 

Substance P Arg-Pro-Lys-Pro-Gln-Gln-PHE-Phe-GLY-LEU-MET-NH2 

Neurokinin A His-Lys-Thr-Asp-Ser-PHE-Val-GLY-LEU-MET-NH2 

Neurokinin B Asp-Met-His-Asp-Phe-PHE-Val-GLY-LEU-MET-NHg 

Neuropeptide K Asp-Ala-Asp-Ser-Ser-Ile-Glu-Lys-Gln-Val-Ala-Leu-
Leu-Lys-Ala-Leu-Tyr-Gly-His-Gly-Gln-Ile-Ser-His-

Lys-Arg-His-Lys-Thr-Asp-Ser-PHE-Val-GLY-LEU-MET-NHz 

Neuropeptide 7 Asp-Ala-Gly-His-Gly-Gln-Ile-Ser-His 
Lys -Arg-His-Lys-Thr-Asp-Ser-PHE-Val-GLY-LEU-MET-NH2 

Calcitonin gene- Ala-Cys-Asp-Thr-Ala-Thr-Cys-Val-Thr-His-Arg-Leu-
related peptide Ala-Gly-Leu-Leu-Ser-Arg-Ser-Gly-Gly-Val-Val-Lys-

Asn-Asn-Phe-Val-Pro-Thr-Asn-Val-Gly-Ser-Lys-Ala-Phe-NHj 

SP and NKA are present in a proportion (35-50%) of small and medium-

sized dorsal root ganglion and trigeminal neurons (Tuchscherer and Seybold, 

1985) that give rise to small unmyelinated and myelinated fibers (Hôkfelt 

et al., 1981; Nagy et al., 1981). Consistent with these findings, SP has 

also been demonstrated within axon terminals of the primary afferent fibers 

in laminae I, II and V of the spinal dorsal horn (Hôkfelt et al., 

1975,1981; Barber et al., 1979; Ruda et al., 1986), and dorsal root 

rhizotomy results in a marked reduction of the SP immunoreactivity in the 

superficial dorsal horn (Hôkfelt et al., 1975; Yaksh et al., 1982; 

Schroder, 1984). Similar effect is produced by neonatal capsaicin 

treatment, which causes a degeneration of 95% of unmyelinated C and about 

30-40% of small myelinated A5 fibers (Yaksh et al., 1982; Franco-Cereceda 
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et al., 1987). Thus, there seems to be a close relationship between the 

presence of SP and the integrity of small diameter C and A5 primary 

afferent fibers. Whereas the primary afferents represent the principal 

source of SP in the dorsal horn, both intrinsic spinal neurons and 

descending terminals contribute to SP-Ll in the dorsal horn (Gibson et al., 

1981; Hôkfelt et la,, 1981; Nagy et al., 1981; Gilbert et al., 1986). SP-

containing terminais form axodendritic and axosomatic synapses and they are 

also postsynaptic to small vesicle-filled axonal and dendritic profiles 

(Chan-Palay and Palay, 1977; Bresnahan et al., 1984). Within the central 

terminals of the primary sensory neurons, SP is confined to the large, 

dense-core vesicles (DeBiasi and Rustioni, 1988). In addition, colloidal 

double-labelling techniques have demonstrated within the central terminals 

the coexistence of the dense-core vesicles with small, clear vesicles 

stained for glutamate. SP and NKA are released by depolarizing 

concentrations of K* from the in vitro spinal cord preparations (Otsuka and 

Konishi, 1976; Gamse et al., 1979; Âkagi et al., 1980; Hua et al., 1986; 

Saria et al., 1986) and from cultured primary sensory neurons (Mudge et 

al., 1979) in a Ca^*-dependent manner. In addition, the release of SP-LI 

and NKA-LI within dorsal horn following noxious cutaneous and high-

intensity electrical stimulation of the primary afferents (Yaksh et al., 

1980; Kuraishi et al., 1985; Brodin et al., 1987; Duggan et al., 1987) has 

been demonstrated. An original study was conducted by Duggan and his 

associates, who used SP- and NKA-antibody-coated microprobes to investigate 

the spatial and temporal patterns of stimulus-dependent release of SP in 

the dorsal horn (Duggan et al., 1987,1990). The results of their work 

strengthen the claim that these two tachykinins have a neurotransmitter or 
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neuromodulator role in the spinal dorsal horn. Although the direct 

experimental evidence is still lacking, the fact that the SF and NKA 

synthesis is encoded by the same gene suggests that these two peptides are 

present in the same vesicles (Nawa et al., 1983). 

Electrophysiological evidence has demonstrated that SP modulates 

neuronal excitability in the dorsal horn (Konishi and Otsuka, 1974; Henry, 

1976; Randié and Miletié, 1977; Otsuka et al., 1982) by activating multiple 

ionic conductances (Murase et al., 1984, 1986, 1989). The cellular 

mechanisms underlying the neuromodulatory function of SP in the dorsal 

horn, however, have not been fully understood. Several lines of evidence 

suggest that the slow excitatory synaptic transmission in the spinal dorsal 

horn may be peptidergic. Thus, high-intensity repetitive stimulation of 

the dorsal roots elicits a slow excitatory postsynaptic potential (sEPSP) 

in about half of tested dorsal horn neurons (Urban and Randié, 1984). The 

time course of this potential, the associated conductance changes, and the 

sensitivity of the sEPSP to synthetic SP analogs having antagonistic 

properties, and to mono- and polyclonal antibodies to SP, suggest that the 

sEPSP may be mediated by SP, or a related tachykinin (Urban and Randié, 

1984; Randié et al., 1986; Randié et al., 1987). Moreover, the depletion 

of SP-LI from the spinal dorsal horn by a neonatal capsaicin treatment 

resulted in a loss of the slow excitatory neurotransmission in the dorsal 

horn (Urban et al., 1985). Although this evidence suggests the involvement 

of SP, perhaps released from the capsaicin-sensitive population of ORG 

neurons, in the mediation of the sEPSP, it should be noted that the 

neonatal capsaicin treatment besides depleting SP-LI results also in a 

decrease of the immunoreactivity for NKA, somatostatin, cholecystokinin, 
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calcitonin gene-related peptide, vasoactive intestinal peptide and galanin. 

Three distinct, G protein-coupled tachykinin receptors have been 

identified in the rat peripheral and central nervous system. The three 

receptors Interact differentially with the tachykinin peptides and are 

uniquely distributed in the nervous system, including the spinal dorsal 

hoim. Endogenous peptides SP, NKA and NKB, are preferential agonists at NK-

1, NK-2 and NK-3 receptors, respectively (Cotman and Iversen, 1987). 

Advances in molecular cloning techniques have contributed to better 

understanding of the tachykinin receptors. SP-activated NK-1 receptor is 

the best studied neurokinin receptor whose primary structure has been 

recently determined (Hershey and Krause, 1990). This receptor is expressed 

by the neurons and glia in the CNS, but also by endothelial cells, 

fibroblasts and several circulating inflammatory and immune cells. Its 

activation results in increased hydrolysis of inositol phospholipids in the 

brain (Mantyh et al., 1984; Torrens et al., 1986). In addition, single cDNA 

clone for the NKA receptor has been isolated that is capable of inducing 

electrophysiological response in the Xenopus oocyte expression system (Masu 

et al., 1987). 

Although all three types of tachykinin receptors and their endogenous 

ligands, SP, NKA and NKB, are present in the spinal dorsal horn, the 

functional significance of multiple neurokinin receptors was not addressed 

until recently, Fleetwood-Walker et al., (1990) performed a series of 

experiments designed to test the effects of iontophoretic application of 

selective tachykinin agonists and antagonists to the region of the 

substantia gelatinosa, on somatosensory responses of identified cat 

spinocervical tract (SCT) neurons. The results from this study implicate 
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NK-2 receptors, and its endogenous llgand NKA, In mediating or facilitating 

the expression of thermal nociceptive Inputs to substantia gelatlnosa. The 

activation of NK-1 receptors reduced the non-noclceptlve responses of SCI 

neurons. No role for NK3 receptors has been proposed as yet. 

Calcitonin gene-related peptide fCGRP) CGRP (Table 4) Is a 37 

amino acid peptide formed In the neural tissue by alternative splicing of 

the primary mRNA transcript of the calcitonin gene (Amara et al., 1982; 

Rosenfeld et al., 1983). CGRP is widely distributed throughout the brain 

(Gibson et al., 1984; Lundberg et al., 1985; Skofltsch and Jacobowltz, 

1985; Franco-Cereceda et al., 1987) but Its function remains largely 

obscure. In the spinal cord, CGRP-lmmmunoreactive fibers and terminals are 

present at all spinal levels. Dense immunoreactivity is observed 

particularly in the areas of the dorsal horn where small primary afferent 

fibers terminate (Llssauer's tract, Laminae I-II), and in the ventral horn. 

About 40 to 50% of rat lumbar ORG neurons are Immunoreactlve for CGRP 

(Gibson et al., 1984; Lee et al., 1985) and this is considered the 

principal source of CGRP in the dorsal horn. No CGRP-LI has been detected 

in the dorsal horn neurons (Gibson et al., 1984). In addition, neonatal 

capsaicin treatment reduced CGRP-LI In the superficial dorsal horn only by 

60% (Franco-Cereceda, 1987). Release of CGRP-LI was demonstrated from rat 

primary sensory neurons in response to capsaicin, high K* or electrical 

stimulation (Franco-Cereceda, 1987) and also in the spinal cord slices 

(Sarla et al., 1986; Oku et al., 1987). Dense representation of high-

affinity CGRP binding sites has been demonstrated in the superficial dorsal 

horn (Inagaki et al., 1986). 

Double Immunostalning techniques have shown that virtually all small 
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SP-LI neurons in Che DRG are Immunoreactlve for CGRP (Gibson et al., 1984; 

Ulesenfeld-Hallin et al., 1984; Franco-Cereceda, 1987). Although this 

interesting finding suggests a potentially important interaction between 

the two peptides stored and likely to be released from the same primary 

afferent terminals, further studies are needed to clarify the cellular 

mechanisms underlying this phenomenon. Similar to SP, CGRP has a slow 

depolarizing effect on the dorsal horn neurons, increases voltage-dependent 

Ca* currents (both N- and L-type) in the DRG neurons and enhances 

excitatory synaptic transmission in the spinal dorsal horn (Randiâ and 

Miletic, 1977; Murase and Randié, 1984; Murase et al., 1986, 1989: Ryu et 

al., 1988a,b). The time course of the depolarizing action of CGRP, 

however, is more prolonged than for SP, and this peptide has been 

implicated in the spinal sensory Integration processes (Ryu et al., 1988a). 

CGRP produces also a prolonged excitation of wide-dynamic range and low-

threshold mechanoreceptive dorsal horn neurons (Miletié and Tan, 1988). 

Intrathecally administered SP and CGRP were reported to synergistically 

modulate the nociceptive flexor withdrawal reflex in the rat (Woolf and 

Wiesenfeld-Hallin, 1986). At present, the role for CGRP in the sensory 

function is not known. 

Opioid peptides Largely due to their clinical significance and to 

recent technological advances, the opioid peptides are among the best 

understood peptide systems in the CNS. The precise chemical structures of 

opioids are known and their genes, mRNAs and precursors (Roberts and 

Herbert., 1977; Gubler et al., 1982; Kakidani et al., 1982) have been 

described. The opioid receptors have been characterized (Robson et al., 

1983) and the release of opioid peptides from nervous tissue (Akil et al., 
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Table 5. Amino acid sequences of opioid peptides 

Leu-Enkephalin Tyr-Gly-Gly-Phe-Leu-OH 

Me t-Enkephalin Tyr-Gly-Gly-Phe-Met-OH 

/3-Endorphin Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-
Thr-Pro-Leu-Val-Thr-Leu-Phe-Lys-Asn-Ala-Ile-
lle-Lys-Asn-Ala-Tyr-Lys-Lys-Gly-Glu-OH 

Dynorphln A Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys-
Leu-Lys-Trp-Asp-Asn-Gln 

1978) has been well documented. There are three major classes of opioid 

peptides represented by enkephalins (ENK), ̂ -endorphin and dynorphln (DYN) 

(Table 5). They are synthesized Independently and have distinct 

distributions in the mammalian CNS, including the spinal cord (Elde et al., 

1976; Glazer and Basbaum, 1981; Hunt et al., 1981). Leucine-ENK is 

present in a few primary sensory neurons and dorsal roots of rats (Senba et 

al., 1982; Putney et al., 1984) but spinal terminations of these afferents 

are unknown. ENK-LI is present in laminae I to V In the dorsal horn (Ruda 

et al., 1986). In lamina I, local circuit neurons, but not spinothalamic 

projection neurons contain ENK-LI, whereas in lamina II both stalked and 

islet cells contain ENK-LI (Glazer and Basbaum, 1981; Bennett et al.. 

Dynorphln A appears to be located in low concentrations in the primary 

sensoiry neurons (Botticelli et al., 1981; Sweetnam et al., 1982). 

Dynorphln A (Basbaum and Glazer, 1986), and its translation system 

(Sweetnam et al., 1986), are particularly represented In the dorsal root 

1982). 
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ganglia of the sacral region. Local circuit and projection neurons 

exhibiting OYN-LI have been demonstrated in high densities in laminae I and 

V (Basbaum and Glazer, 1986). 

Opioid peptides exert their actions via opioid receptors of which at 

least 3 major types exist: n, S and k. Synthetic compound, (Tyr-D-Ala-Gly-

Me-Phe-Gly-ol)-enkephalin (DAGO) and morphine are relatively selective 

llgands for /i-opioid receptors (Handa et al., 1981). [D-Pen 2,5]-

enkephalin (DPDPE) is a selective ligand for 5-receptors. Synthetic 

arylacetamides (U50488H and PD117302) are selective agonists, whereas nor-

blnaltorphimine is a selective /c-receptor antagonist (Takemori et al., 

1988), There is convincing evidence that dynorphin and related 

peptides, encoded by the pro-dynorphin gene, are endogenous llgands at k-

receptors. Endogenous llgands for n and 8 receptors have not been 

Identified as yet. 

The role of opioid receptors in spinal transmission has been recently 

reviewed (Evans, 1989; Fields and Basbaum, 1989; Jessell and Dodd, 1989; 

Yaksh and Aimone, 1989). p-, k- and perhaps also (-receptors have been 

Identified on subpopulations of cultured immature DRG neurons (Mudge et 

al., 1979) and adult DRG cells in situ (Williams and Zleglgânsberger, 

1982). Whereas the inhibitory effect of opioids on the release of SP from 

the spinal cord was clearly demonstrated (Jessell and Iversen, 1977; Yaksh 

et al., 1980), recent evidence implies that this effect is much more 

complex. It has been shown that f-receptor agonists inhibit the release of 

SP whereas p-receptor agonists increase it. The finding (Pochl et al. , 

1989) that activation of and 6- receptors attenuates the release of SP-

LI from C-fibers of the knee joint suggests the presence of functional 
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opioid receptors on the G primary afferents (Yaksh and Mmone, 1989). Both 

spinal intemeurons (Murase et al., 1982; Yoshimura and North, 1983) and 

primary afferent terminals (Jessell and Iversen, 1977; Carstens et al., 

1979; Fields et al., 1980) may be involved in the /i-receptor depressant 

effects of opioids. 

Recent studies on the cultured DRG neurons have shown that low 

concentrations of specific /i, 6- and /c-receptor ligands (1-10 nM) can evoke 

naloxone-reversible prolongation of the action potential in about 80% of 

tested cells. When applied in higher concentrations (about 1/iM), the same 

agonists cause a reduction in the action potential duration (Grain and 

Shen, 1990). Increase in the action potential duration to /x- (DAGO) or 5-

(DPDPE) opioid receptor agonists seems to be due to a decrease in a voltage 

sensitive K* conductance(s), whereas the action of /c-receptor agonist 

(U50488H) appears to involve an increase in a voltage-sensitive Ca^* 

conductance (Grain and Shen, 1990). Grain and Shen (1990) have also 

suggested that the excitatory effects of opioids on DRG neurons are 

mediated by opioid receptors positively coupled via a Gg-like protein to 

adenyl cyclase and cAMP-dependent voltage-sensitive ionic conductances. By 

contrast, the inhibitory effect appears to be mediated by opioid receptors 

linked to Gi/Go. Since the cultured DRG neurons are devoid of synaptic 

contacts, the effects of opioids are likely to be a consequence of a direct 

action. Some of the excitatory effects of opioids in the brain and spinal 

cord were explained by disinhibiting mechanisms (Zieglgânsberger et al., 

1979). 

Lower concentrations of /x- or /c-receptor agonists facilitate the G-

fiber-evoked nociceptive responses, whereas higher concentrations result in 
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Inhibition (Knox and Dickenson, 1987). Spinal antinociceptive action of 

opioids has been demonstrated (Fleetwood-Walker et al., 1986, 1988). 

Inhibitory effects of opioids on dorsal horn neurons have been shown to be 

mediated by an increase in a Ca^*-dependent conductance resulting in a 

hyperpolarization of membrane potential (Yoshimura and North, 1983). 

Release of Putative Endogenous Amino Acids Neurotransmitters 

in the Rat Spinal Dorsal Horn. 

Secretion of specific chemical messengers by cells Is a fundamental 

physiological process, central to our understanding of cell and tissue 

interactions in all multicellular organisms. Chemical neurotransmission 

represents the primary form of intercellular communication in the nervous 

system, yet relatively little is known about the identity of the chemical 

messengers and molecular processes involved. 

A set of experimental criteria has been developed for identifying 

possible neurotransmitters and neuromodulators in the nervous system, as 

shown in Table 6 (reproduced from Gainer and Brownstein, 1981). One of the 

criteria of rigorous scientific identification of the neurotransmitter for 

a given central neuronal connection, requires the demonstration of release 

of the proposed transmitter from presynaptic nerve endings in response to 

stimulation of the nerve fibers. 

The release and uptake of excitatory amino acids 

The discovery of quantal neurotransmitter release (Fatt and Katz, 

1952) and the subsequent morphological identification of the acetylcholine-
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Table 6. Steps in identification of neurotransmitters 
(Gainer and Brownstein, 1981) 

1. Anatomical: presence of the substance in appropriate amounts in 
presynaptic processes. 

2. Biochemical: presence and operation of enzymes that synthesize the 
substance in the presynaptic neuron and processes, and remove or inactivate 
the substance at the synapse. 

3. Physiological: demonstration that physiological stimulation causes the 
presynaptic terminal to release the substance, and that iontophoretic 
application of the substance to the synapse in appropriate amounts mimics 
the natural response. 

4. Pharmacological: drugs that affect the different enzymatic and 
biophysical steps have their expected effects on synthesis, storage, 
release, action, inactivation, and reuptake of the substance. 

containing synaptic vesicles (De Robertis, 1954) led to the concept that 

one quantum ofneurotransmitter corresponds to the neurotransmitter stored 

in one synaptic vesicle released by exocytosis (Del Castillo and Katz, 

1956). Although challenged (Dunant, 1986), this hypothesis has been 

confirmed many times over the years by isolation of a highly pure 

preparation of synaptic vesicles (Whittaker et al., 1966), demonstration of 

exocytotic profiles 

(Heuser et al., 1979), incorporation of vesicular antigens into the plasma 

membrane upon stimulation (Von Uedel, 1981) and uptake of extracellular 

markers by recycling synaptic vesicles (Zimmermann, 1979). 

The present concept is that in the mammalian CNS, dicarboxylic amino 

acids, glutamate and aspartate, are the major excitatory transmitters 

whereas GABA and glycine are the major inhibitory neurotransmitters which 
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undergo Ca^*-dependent exocytosis after stimulation (Fonnum, 1984; 

Krnjevld, 1984). Use of brain synaptosomes has proven to be the best model 

for the studies of the release of glutamate from intact nerve terminals 

(Nicholls and Attwell, 1991). Release of glutamate is measured indirectly, 

by adding glutamate dehydrogenase and NADP* to the synaptosomal incubation 

medium, and measuring the increase in fluorescence as a result of a 

conversion of glutamate and NADP^ into 2-oxoglutarate and fluorescent 

NADPH* (De Belleroche et al., 1977). Using this assay it has been 

demonstrated that about 15% of the total glutamate content of cerebral 

cortical or hippocampal synaptosomes can be released in a Ca^*-dependent 

manner by prolonged depolarization with KCl (Nicholls, 1989). The Ca^^ 

dependent pool of glutamate exchanges much more slowly with added glutamate 

than does the glutamate in the cytoplasm, the finding consistent with the 

possibility of release occurring from a non-cytoplasmic, presumably 

vesicular compartment (Wilkinson and Nicholls, 1989). The release of 

glutamate is dependent on the maintenance of high energy levels and may be 

substantially inhibited by a decrease in ATP/ADP ratio. 

The Ca^*-dependent release of endogenous aspartate from isolated nerve 

terminal preparation is about 10% of that seen for glutamate (McMahon and 

Nicholls, 1990). In apparent contradiction to this result are results 

obtained using brain slices (Szerb, 1988; Kihara et al., 1989; Cuenod, 

1990; Kangrga and Randié, 1990, 1991; Kangrga et al., 1989, 1900a,b; Kubo 

et al., 1990) and in vivo perfused rat spinal cord (Smullin et al., 1988), 

where a significant release of aspartate has been reported. Nicholls and 

Attwell (1991) proposed two possible explanations for this apparent 

paradox. First, there may be a selective inactivating effect of the 
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synaptosomal preparation on the aspartatergic neuronal population. Second, 

the function of the plasma membrane amino acid carrier may be compromised 

in the brain slices and a non-vesicular release of the amino acid may 

occur. 

Two transport pathways are integral to the ability of glutamate to 

function as a neurotransmitter: a powerful uptake carrier located in the 

cellular membrane, and a more specific transporter capable of packaging 

glutamate into a subpopulation of synaptic vesicles. The two transport 

mechanisms maintain the concentrations of glutamate in the extracellular 

space, the presynaptic cytoplasm and glutamatergic synaptic vesicles of the 

order of 1 /iM, 10 mM and lOOmM, respectively (Maycox et al., 1990). 

Glial cells and neurons possess a similar plasma membrane glutamate 

(acidic amino acid) carrier which helps termination of the postsynaptic 

actions of glutamate and normally keeps its concentration below levels that 

damage neurons (Rothman and Olney, 1987). Although the most of radioactive 

glutamate applied to the brain is taken up by the glia, the neuronal uptake 

transporters are placed ideally in th^ presynaptic membrane to quickly 

remove glutamate after it has acted on the postsynaptic membrane. This 

carrier system is not specific for glutamate since it also transports L-

and D- aspartate. Radiotracing studies have shown that the uptake of each 

ion of glutamate into a cell is driven by the movement of two Na"^ down the 

membrane electrochemical gradient (Stallcup et al., 1979). Recently, 

whole-cell patch-clamp technique revealed that both increase and decrease 

of intracellular K* inhibit glutamate uptake as does membrane 

depolarization (Barbour et al., 1988). In addition, a potent inhibitory 

effect of arachidonic acid on the glial glutamate uptake system has been 
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demonstrated (Barbour et al., 1989). This may contribute to the failure of 

glutamate uptake system observed in anoxia. 

It has been shown that isolated synaptic vesicles, in the presence of 

an ATP-regenerating system necessary to prevent leakage of glutamate from 

the vesicles, retain high concentrations of glutamate (Burger et al., 

1989). The vesicular glutamate transporter is readily distinguished from 

the plasma membrane acidic amino acid carrier since it is Na'*'-independent 

and displays a millimolar rather than micromolar affinity for glutamate, 

consistent with the expected concentration of glutamate in the cytoplasm 

(Maycox et al., 1990). This carrier is specific for glutamate and does not 

appear to transport aspartate (Naito and Ueda, 1985). 

In addition to aspartate and glutamate, considerable evidence has 

surfaced supporting the neurotransmitter role of sulfur-containing analogs 

of glutamate, homocysteine, sulfinic acid and homocysteic acid (HCA) in the 

brain (Cuenod et al., 1990). Although the release of these acids has not 

been demonstrated at the level of synaptosomes, studies in the cortical and 

hippocampal slices have clearly shown a Ca^*-dependent release of HCA (Do 

et al., 1986). These findings are supported by those of the strong 

depolarizing effect of HCA on the neurons in the cerebral cortex, 

hippocampus, striatum, cerebellum, retina and spinal cord (Gâhwiler, 1981; 

Zeise et al., 1988; Patneau and Mayer, 1990). These actions of HCA seem to 

be mediated by NHDA receptors. Immunocytochemical studies have indicated 

that in rat cortex, hippocampus, cerebellum and retina HCA is located 

predominantly in the glial elements (Cuenod et al., 1990). While release, 

uptake, and neural activity of HCA are compatible with an excitatory 

transmitter role, the localization of HCA in glial elements raises a 
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problem. 

The presynaptic Ca'* channel 

Calcium clearly plays a pivotal role as an intracellular messenger for 

a variety of cellular responses, including contraction and secretion 

(Hille, 1984; Kennedy, 1989). When the concentration of free cytoplasmic 

Ca^* ([Ca^*] i) rises into the micromolar range many Important cellular 

events are initiated. This transient increase of [Ca^*]i can be initiated 

in two ways: 1. Calcium can be released from Intracellular storage sites 

associated with the endoplasmic reticulum, and 2. The increase in Ca^* may 

be due to opening of Ca^^ channels in the plasma membrane through which Ca^;*" 

can pass into the cytoplasm, down its electrochemical gradient. 

With recent knowledge of the diversity of voltage-sensitive Ca^* 

channel types (Nowicky et al., 1985; Tsien et al., 1990) several studies 

have attempted to identify the channels present in the presynaptic 

terminals. Several classes of compounds have been shown to interact with 

voltage-sensitive calcium channels. Particularly useful pharmacological 

tools are the dihydropyridines (DHP's), typified by agonists BAY K 8644 and 

antagonists, nitrendipine and nifedipine. While these compounds modulate 

selectively L, but not N and T, Ca^* channels the other Ca^* blockers such 

as phenylalkylamines, diltiazem or bepridil, have lower specificities and 

affinities for Ca^* channels. The release of SP from cultured rat (Perney 

et al., 1986) and chick (Rane et al., 1987) primary sensory neurons is 

extremely sensitive to modulation by DHP's, the finding Implicating 

involvement of L-type channels. By contrast, N-type channels seem to be 

responsible for neurotransmitter release from rat brain nerve terminals 
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(Reynolds et al., 1986). In rat sympathetic neurons both L- and N-type 

channels may be Involved In release under certain experimental conditions 

(Nowlcky et al., 1985). In AplysLa sensory neurons in culture, a slowly 

inactivating, DHP-sensltive Ca^* channel (comparable to the L-type channel) 

has been Implicated in modulation of transmitter release by tonic 

depolarization, whereas a rapidly inactivating, DHP-Insensitive component, 

(resembling the N-type channel) seems to modulate neurotransmitter release 

evoked by transient depolarization, presynaptic facilitation and 

inhibition, and homosynaptic depression (Edmonds et al., 1990). Thus, it 

appears that different types of Ca^* channels regulate transmitter release 

at different synapses, and this may have important functional consequences 

for transmitter release. One general feature of all presynaptic Ca^* 

channels is that they inactivate slowly, perhaps as a means of permitting 

sustained release of transmitters during prolonged depolarization. 

Location of clustered presynaptic Ca^* channels in the nerve terminals 

within the site specialized for neurotransmitter secretion, called the 

active zone, has been possible with the use of a fluorescent Ca^* 

Indicator, fura-2 (Smith et al., 1988). The association of the active zone 

with fast, direct-acting transmitters stored in clear-core vesicles 

suggests its role In rapid signalling. It has been proposed that N-type 

Ca^* channels (with approximate channel conductance of 13 pS) may be 

Involved in triggering transmitter release from the active zones. 

Although the mechanism of neuropeptide release is thought to be also 

vesicular, this process is slow and spatially diffuse, and appears to occur 

without any discernible active zone. L-type Ca}* channels (25 pS) may 

regulate exocytosls of large, dense-core, peptidergic vesicles. Although 
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both peptides and fast-acting neurotransmitters may be released from the 

same nerve terminal, there Is evidence that high frequency stimulation may 

be required to Initiate peptide secretion (Lundberg et al., 1983). If 

peptides are Indeed secreted at presynaptic regions distant from the active 

zones, this differential frequency sensitivity could be due to the fact 

that Ca^* enters the presynaptic terminal at the active zones, but only 

extends beyond the active zone during the massive Ca^* entry that 

accompanies high frequency stimuli and activation of L-type channels. 

Release of glutamate and aspartate in the spinal dorsal horn 

The available experimental evidence indicates that there are two 

major classes of putative excitatory neurotransmitters and neuromodulators 

that are released in the spinal dorsal horn during activation of primary 

sensory neurons. L-glutamate, or a related compound, has been implicated 

in fast excitatory transmission (Mayer and Westbrook, 1987; Evans, 1989), 

whereas neuropeptides, such as tachykinins, CGRP and opioid peptides, are 

considered as modulators of the excitatory neurotransmission in the dorsal 

horn (Urban and Randié, 1984; Jeftlnija et al., 1986; Ryu et al., 1988a,b, 

1989). Although there are good morphological (Battaglla and Rustlonl, 

1987; DeBlasi and Rustlonl, 1988; Westlund et al., 1989a,b) and functional 

indications (Mayer and Westbrook, 1987; Schneider and Perl, 1988; Evans, 

1989) that glutamate and aspartate may serve as neurotransmitters of the 

primary afferent fibers, the evidence of release of these amino acids from 

defined neuronal elements has been difficult to obtain. 

Roberts and Mitchell (1972) were the first to examine the release of 

excitatory amino acids, glutamate and aspartate, from Isolated amphibian 
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hemlcord in response to electrical stimulation of the dorsal roots. 

Although this first study failed to support the proposed role of amino 

acids in primary afferent transmission, Roberts (1974) demonstrated that 

electrical stimulation of the rat dorsal column tract fibers In vivo, 

produced a Ca^*-dependent Increase in the efflux of glutamate and GABA from 

the superfused dorsal column nuclei. Although Osborne and Bradford (1973) 

demonstrated that, in addition to glutamate and GABA, aspartate and glycine 

are released by electrical- or high potassium-stimulation from crude 

synaptosomal preparations of the rat spinal cord and medulla, the source of 

aspartate and glycine in the spinal cord was thought to be primarily 

interneuronal (Davidoff et al., 1967, Homma, 1979). Studies in the 

isolated amphibian (Takeuchi et al., 1983; Kawagoe et al., 1985) and 

newborn rat spinal cord (Kawagoe et al., 1986) demonstrated the release of 

glutamate, but not aspartate, from the spinal dorsal horn in response to 

electrical stimulation of the dorsal roots, the findings favoring a role 

for glutamate as a primary afferent transmitter candidate. Potashner and 

Tran (1984) reported that in the isolated guinea pig spinal cord dorsal 

rhizotomy was associated with decreased uptake (by 20-30%) and release of 

D-aspartate (by 50%) evoked by electrical field-stimulation. D-aspartate 

was used as a non-metabolizable marker for L-Glu and/or L-Asp, as it is 

accumulated and released by neurons thought to use these amino acids as 

transmitters (Cuenod et al., 1982). Although these findings supported the 

role of excitatory amino acids as primary afferent transmitters they could 

not discriminate between glutamate and aspartate. Masters et al., (1989) 

demonstrated that, in in vivo, regionally superfused rat spinal cord, 

depolarization with KCl significantly increased the levels of glutamate. 
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glycine and taurine. This effect appeared to be specific since the levels 

of other 17 amino acids were not changed. Thus, glutamate was largely 

favored over aspartate as an amino acid transmitter candidate of primary 

afferent fibers. However, the possible source of released glutamate with 

regard to the class of primary sensory neurons, was not addressed in any of 

these studies. 

It has been recently demonstrated that, besides glutamate, aspartate 

may be released upon electrical stimulation in slices of the hippocampus 

and striatum (Bliss et al., 1986; Girault et al., 1986; Szerb, 1988; Cuenod 

et al., 1990) and medulla (Kihara et al., 1989; Kubo et al., 1990), and 

upon chemical stimulation (high potassium) from the cultured cerebellar 

neurons (Van Vilet et al., 1989). In addition, a variety of synaptosomal 

preparations have been shown to possess exocytotic pools of glutamate and 

aspartate (Nicholls and Talvinder, 1986; Nicholls, 1989). 

Release of neurotransmitters can be modulated by activation of 

autoreceptors, heteroreceptors or receptors for the coexisting substances, 

such as neuropeptides (Lundberg et al., 1980; Bartfai et al., 1988). 

Although electrophysiological and radio-ligand binding studies support the 

existence of excitatory amino acid receptors on the primary sensory neurons 

(Davies et al., 1979; Evans, 1985; Agrawal and Evans, 1986), the putative 

feedback control of the release of excitatory amino acids from primary 

afferent fibers has not been demonstrated, as yet. The glutamate analog, 

AP4, has been reported to inhibit the release of glutamate from the 

hippocampal synaptosomes by acting at the presynaptic L-AP4 receptor 

(Gannon et al., 1989). Glutamate and kainate can regulate the release of 

glutamate by activating a presynaptic receptor controlling chloride 
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channels (Garantis et al., 1988), and glutamate and quisqualate have been 

shown to Inhibit neuronal calcium currents via a G protein-linked mechanism 

(Lester and Jahr, 1990) that may provide a negative feedback control of 

glutamate release. 

Coexistence of excitatory amino acids and neuropeptides in the primary 

sensory neurons: physiological implication 

Primary sensory neurons and dorsal horn interneurons represent complex 

coexistence systems. Glutamate and SP coexist in some small primary 

afferent neurons (Battaglia et al., 1987) and in their terminals in the 

superficial dorsal horn (DeBiasi and Rustioni, 1988). Neuropeptides SP, 

NKA and CGRP coexist in a proportion of capsaicin-sensitive DRG neurons 

(Nagy et al., 1981; Gibson et al., 1984; Franco-Cereceda et al., 1987; 

Diaz-Guerra et al., 1988). Thus, the primary sensory neurons contain 

multiple neuropeptides (i.e., SP, CGRP, GAL, SS), products of distinct 

genes, and low molecular weight "classical" neurotransmitters. This 

phenomenon of coexistence involves synchronized transcription and 

translation of several genes. Whereas it is clear that all neurons carry 

the genes for the neuropeptides, and for the enzymes that synthesize the 

classical low molecular weight transmitters, little is known about the 

mechanisms that govern the expression of these genes. 

Modulation of release of glutamate by SP was studied using amphibian 

(Takeuchi et al., 1983) and newborn rat (Kawagoe et al., 1986) spinal cord 

in vitro. Perfusion with SP elicited an Increase in the basal efflux of 

glutamate while the levels of aspartate were not changed. In the latter 

report the SP effect was Ca^^ sensitive and blocked in the presence of 
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tecrodotoxln (TTX). 

In the In vivo experiments by Smullln et al. (1988, 1990), perfusion 

of the dorsal hom with SP (1 mM) Increased the concentration of glutamate 

and aspartate in the spinal dialysis fluid. CGRP produced no changes ixL-the 

release of endogenous glutamate, aspartate, glycine and taurine in this 

study. 

Electrophysiological evidence suggests that SP, NKA and CGRP may 

modulate primary afferent transmission by acting at the postsynaptic site 

(Murase and Randié, 1984, Murase et al., 1989), and modulation of the 

responses to glutamate by SP has been directly demonstrated in acutely 

dissociated dorsal horn neurons (Randié et al., 1990). In addition, recent 

studies from our (Ryu et al., 1989; Kangrga et al., 1989, 1990a,b; Kangrga 

and Randié, 1990, 1991) and other laboratories (Kawagoe et al., 1986; 

Smullln et al., 1990) suggest the presynaptic site of action of 

neuropeptides. These findings are supported by the presence of peptide 

receptors on the primary sensory neurons (Mantyh, 1984; Henke et al., 1985) 

and modulation of Ca^* channel currents by CGRP (Ryu et al., 1989) and SP 

(Murase et al., 1990) that are critical for the process of neurotransmitter 

release. 

Rationale 

Anatomical and physiological studies have provided a detailed 

description of the organization of afferent projections to the spinal 

dorsal horn and of the characteristics of the second order neurons. The 

data, in addition, have emphasized the central role of the primary afferent 
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synapse in Che processing and integration of the cutaneous sensory 

Information In the dorsal horn. However, the Identity of neurotransmitters 

and neuromodulators at primary afferent synapses and cellular mechanisms of 

their pre- and postsynaptic actions have not as yet been resolved. The 

evidence indicates that there are two major classes of putative excitatory 

neurotransmitters and neuromodulators that are released during activation 

of primary sensory neurons in the mammalian spinal cord. The present 

concept is that glutamate and/or aspartate function as fast excitatory 

neurotransmitters. Tachykinins (substance P, neurokinin A), calcitonin 

gene-related peptide (CGRP) and opioid peptides are thought to be involved 

in the modulation of primary afferent neurotransmission. 

The presence, and in some cases the co-existence of peptides (i.e., 

tachykinins, CGRP, opioid peptides) and glutamate, has been reported in 

primary sensory neurons. Chemical signal transfer via such neurons 

presents new aspects and complexities of presynaptic and postsynaptic 

regulation which have not been previously considered. Available data 

Indicate that complex patterns of coexistence of multiple transmitters 

provide a new type of chemical coding that relates the chemistry of the 

neurons to their projections and functions. The finding of GLU-LI and SP-

LI In a proportion of small primary sensory neurons (Battaglla and 

Rustlonl, 1987), raises a possibility of chemically-coded and functionally 

distinct classes of GLU-containing small primary sensory neurons. The 

physiological Implications of such plurlchemical transmission in the spinal 

dorsal horn need to be elucidated. 

The present study attempted to estimate the contribution of different 

classes of activated primary sensory neurons to the release of nine 
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endogenous amino acids (glutamate, aspartate, glutamine, asparagine, 

glycine, 7-aminobutyric acid, serine, threonine and alanine) in the spinal 

dorsal horn, the issue not addressed previously. Specifically, the 

experiments utilized selective electrical stimulation of the low-threshold 

(Afi) and of both low- and high-threshold (A + C) primary afferent fibers. 

In addition, supporting evidence for the Involvement of the small-diameter 

primary afferents was sought by using chemical stimulation of this class of 

primary afferents. In the latter experiments the dorsal root ganglia were 

perfused with capsaicin (8-methyl-N-vanillyl-6-noneamide) or 

resiniferatoxin, the agents known to selectively activate a subpopulation 

of small primary sensory neurons. Furthermore, the possibility of the 

modulation of the basal and the dorsal root stimulation-evoked release of 

the nine endogenous amino acids by tachykinins, calcitonin gene-related 

peptide, opioid peptides, and also by the activation of GABAg receptors, 

has been investigated. 

We have used the in vitro superfused horizontal rat spinal cord 

slice - dorsal root ganglion preparation and high performance liquid 

chromatography for fluorimetric detection of amino acids in the spinal 

slice superfusate. The major advantages of the slice preparation are: 1. 

The slices are quickly prepared suffering less damage than, for instance, 

synaptosomes; 2. They provide a relatively well preserved primary 

afferent-dorsal horn neuronal circuitry; 3. The slice preparation allows 

for a fast application and removal of known concentrations of chemicals and 

for the alterations In the ionic microenvironment. However, there are also 

limitations to the slice preparation studies: 1. The complexity of the 

anatomical structure and the existence of several types of neuronal and 
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glial cells may complicate the interpretation of the results, and 2. The 

slices have an extracellular space and diffusion barriers and even in the 

superfusion experiments the re-uptake of neurotransmitters cannot be 

completely prevented. 

In the present study we have provided evidence for the release of 

endogenous glutamate and aspartate from the rat spinal dorsal horn In vitro 

in response to the electrical activation of the low-threshold primary 

afferent fibers and also upon the electrical or chemical activation of the 

high-threshold primary afferents. In addition, our results indicate that 

tachykinins and CGRP may enhance the basal and the evoked release of 

endogenous glutamate and aspartate , whereas opioid peptides acting at p-

receptors, and the activation of GABAg receptors, suppress the evoked 

release of the two amino acids in the spinal dorsal horn. The Interaction 

of the peptides and the excitatory amino acids at presynaptic sites may 

serve the purpose of increasing (tachykinins, CGRP) or decreasing (opioid 

peptides acting at p-receptors) the capacity for sensory information 

transfer at the first incoming synapse into the CNS. 
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SECTION I. TACHYKININS AND CALCITONIN GENE-RELATED PEPTIDE ENHANCE 

RELEASE OF ENDOGENOUS GLUTAMATE AND ASPARTATE FROM THE RAT 

SPINAL DORSAL HORN SLICE^ 

^Published as a research paper by I. Kangrga and Mirjana Randié. 1990. 
Neurosci. 10: 2026-2038. 
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SUMMARY 

The effects of dorsal root stimulation and of substance P (SP), 

neurokinin A (NKA) and calcitonin gene-related peptide (CGRP) on the basal 

release of nine endogenous amino acids have been investigated using the rat 

spinal cord slice-dorsal root ganglion preparation. The perfusate was 

analyzed for aspartate, glutamate, asparagine, glutamine, glycine, gamma-

aminobutyric acid, serine, threonine and alanine using high performance 

liquid chromatography with fluorimetric detection. High intensity 

repetitive electrical stimulation of a lumbar dorsal root produced a Ca^*-

dependent increase in the basal release of aspartate, glutamate, glycine, 

serine and threonine. Low concentrations of SP (2xlO"^M) caused a 

selective increase in the rate of basal release of glutamate, whereas with 

higher concentrations (l-5xlO"®M), in addition to glutamate, an increase in 

the release of aspartate was observed. NKA (5x10"' to 10"®M) , a related 

tachykinin that is co-expressed with SP in primary sensory neurons, 

enhanced the basal release of glutamate, aspartate and glycine. The 

enhancement of the basal release of glutamate by SP persisted in the -

absence of external , but the effect was blocked by (D-Arg^, D-Pro^, D-

Trp^'®, Leu^^)-SP, a SP analogue claimed to be an antagonist of synthetic 

SP. CGRP (lO'^M) caused a significant, Ca^*-Independent increase of the 

basal release of glutamate and aspartate and a decrease of asparagine. SP 

and CGRP potentiated the electrically-evoked release of glutamate and 

aspartate. Neonatal capsaicin treatment did not markedly alter the basal 

efflux of nine endogenous amino acids from the spinal slices, but it 

prevented the dorsal root stimulation-evoked release of aspartate. 
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glutamate, glycine and threonine. In addition, the capsaicin treatment 

prevented the SP-induced increase In the release of glutamate, whereas the 

effect of CGRP was not significantly modified. These results indicate that 

tachykinins (SP and NKA) and CGRP are capable of modulating the basal and 

electrically-evoked release of endogenous glutamate and aspartate and these 

actions may provide an important mechanism by which the peptides contribute 

to the regulation of the primary afferent synaptic transmission. The 

enhancement of the basal and the dorsal root stimulation-evoked release of 

glutamate and aspartate by tachykinins and CGRP may have important 

physiological implications for strengthening the synaptic connections in 

the spinal dorsal horn. 
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INTRODUCTION 

Immunohistochemlcal techniques have demonstrated that neurons contain 

multiple chemical substances that may act as neurotransmitters 0,r_ 

neuromodulators. However, the physiological significance of this 

phenomenon, especially for information transfer in the nervous system, is 

not well understood. 

Synaptic transmitters released during activation of primary sensory 

neurons in the dorsal horn of the rat spinal cord may elicit both fast and 

slow excitatory responses in a single neuron (Murase and Randic, 1983; 

Urban and Randic, 1984). Dicarboxyllc amino acids, glutamate and 

aspartate, appear to be the major candidates for the fast excitatory 

neurotransmitters in the mammalian central nervous system (Watkins and 

Evans, 1981; Mayer and Westbrook, 1987), including the spinal dorsal horn 

(Galindo et al., 1967; Pull, 1983; Salt and Hill, 1983; Kangrga et al., 

1988; Gerber and Randic, 1989a). Tachykinins, substance P (SP) and 

neurokinin A (NKA), and calcitonin gene-related peptide (CGRP), appear to 

be functionally involved in the slow primary afferent synaptic transmission 

(Urban and Randic, 1984; Randic et al., 1986; Yaksh, 1986; Ryu et al., 

1988a, Gerber and Randic, 1989b). 

Glutamatergic excitatory transmission at the terminals of primary 

sensory neurons has been indicated by several lines of evidence. The 

higher concentration of glutamate in the dorsal roots as compared to the 

ventral roots (Duggan and Johnston, 1970) and Ca^^-dependent release of 

glutamate from electrically stimulated primary afferent fibers has been 

demonstrated (Roberts, 1974; Takeuchl et al., 1983; Kawagoe et al., 1986). 
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Inununocytochemlcal studies have shown that about 70% of both large and 

small ORG neurons are labeled for glutamate (Wanaka et al., 1987) and 

glutamate Immunoreactlvlty has been detected within myelinated and 

unmyelinated primary afferent terminals in the superficial dorsal horn 

(Weinberg et al., 1987; Miller et al., 1988; Westlund et al., 1989a). ®H-

glutamate and 'H-aspartate, are selectively taken up by a certain 

proportion of small and large dorsal root ganglia (ORG) neurons (Duce and 

Keen, 1983; Barbaresi et al., 1985). L-glutamate binding sites are found 

in high densities in the superficial laminae of the rat spinal dorsal horn 

(Greenamyre et al., 1984; Monaghan and Cotman, 1985). Glutamate was found 

to excite and depolarize almost all spinal dorsal horn neurons in vivo 

(Curtis et al., 1960; Watkins and Evans, 1981) and a proportion of dorsal 

horn neurons in vitro (Zieglgansberger and Puil, 1973; Schneider and Perl, 

1985). 

SP and NKA are also present in a proportion of small ORG neurons and 

in numerous terminals in the superficial laminae of the spinal dorsal horn 

(Hôkfelt et al., 1975; Barber et al., 1979; Kanazawa et al,, 1984; 

Dalsgaard et al., 1985). On electrical or chemical stimulation, Ca^*-

dependent release of SP and NKA from activated primary afferent fibers has 

been demonstrated both in vitro (Otsuka and Konishi, 1976; Gamse et al., 

1979; Hua et al., 1986) and in vivo (Yaksh et al., 1980; Brodin et al., 

1987). SP binding sites have been demonstrated autoradiographically in the 

spinal dorsal horn (Mantyh et al., 1984a; Ninkovic et al., 1985) and a 

correlation has been observed between the distribution of ('H]-SP binding 

sites and the ability of SP to stimulate phosphatidylinositol turnover 

(Mantyh et al. 1984b). SP depolarizes dorsal horn neurons (Henry et al., 
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1975; Randic and Miletic, 1977). 

The presence of CGRP-like immunoreactivity (CGRP-LI) in rat DRG 

neurons and the spinal dorsal horn has been demonstrated (Gibson et al., 

1984). Both CGRP binding sites (Henke et al., 1985) and CGRP-LI (Gibson et 

al., 1984) exist in high concentrations in the superficial layers of the 

spinal dorsal horn. Release of CGRP from rat primary sensory neurons in 

response to capsaicin (Franco-Cereceda et al., 1987; Diez Guerra et al., 

1988) and electrical stimulation (Saria et al., 1986) has been shown. 

There is evidence that SP, NKA and CGRP may modulate primary afferent 

neurotransmission by acting both at presynaptic (Kawagoe et al., 1986; Ryu 

et al., 1988a,b; Jinnal et al., 1989; Kangrga et al., 1989a,b) and 

postsynaptic sites (Murase and Randic, 1984; Murase et al., 1989a,b). 

Although the coexistence of SP and glutamate in some small primary afferent 

neurons (Battaglia et al., 1987) and their terminals in the superficial 

dorsal horn (DeBiasi and Rustioni, 1988) has been reported, and the 

coexistence of SF, NKA and CGRP in a proportion of capsaicin-sensitive DRG 

neurons (Nagy et al., 1981; Gibson et al., 1984; Franco-Cereceda et al., 

1987; Diez Guerra et al., 1988), our understanding of physiological 

implications of this phenomenon is still unclear. An important, but as yet 

not systematically investigated site at which co-existent peptides could 

modulate excitatory amino acid function, and in this way contribute to 

primary afferent synaptic transmission, is found presynaptically in the 

control of basal and depolarization-evoked release of glutamate and 

aspartate. In an attempt to determine whether SP, NKA and CGRP modulate 

the release pattern of excitatory amino acids, we have investigated the 

efflux of nine endogenous amino acids, including glutamate and aspartate, 
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from the superfused spinal cord slices of the rat, In response to 

electrical stimulation of dorsal roots, administration of neuropeptides 

(SP, NKA and CGRF) and chronic treatment of rats with capsaicin. 

Since the efflux of endogenous amino acids in the dorsal horn may 

derive from different neuronal sources. Including some descending pathways 

(Stone 1979; Rustioni and Cuenod, 1982; Potashner and Tran, 1984; Potashner 

and Dymzyk, 1986) and intrinsic dorsal horn interneurons (Davidoff et al., 

1967; Rustioni and Cuenod, 1982), we have tried to determine the 

contribution of the primary afferent fibers in the dorsal root to 

electrically-evoked and peptide-evoked release of amino acids by using 

neonatal capsaicin treatment. Sensory neurotoxin capsaicin (8-methyl-N-

vanillyl-6-noneamide) (Jancso, 1968), when given neonatally causes the 

death of small ORG neurons, many of which are known to contain SP, NKA, and 

CGRP (Jancso et al., 1977; Nagy et al., 1981; Franco-Cereceda et al., 1987; 

Diez Guerra et al., 1988). Preliminary reports of some aspects of this 

work have been published (Kangrga et al., 1989, 1990), 
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METHODS 

Horizontal slices were obtained from Sprague-Dawley rats of both sexes 

(23-45 days old) by using a technique that has been described In detail 

elsewhere (Murase and Randlc, 1983; Gerber et al., 1989), Briefly, after 

the animal was anesthetized with ether a segment of the lumbosacral (L5-S1) 

spinal cord was dissected out and sectioned with a Vlbratome to yield one 

300-400 fim thick horizontal slice with dorsal rootlets and dorsal root 

ganglia attached. In some experiments a part of sciatic nerve was left in 

the contact with a dorsal root ganglion. The slice was incubated for 1 hr 

in oxygenated (95% O2 + 5% 00%) control solution (in raM); NaCl, 124; KCl, 

5; KH2PO4, 1,2; CaClg, 2.4; MgSO*, 1.3; NaHCOg, 26; glucose, 10; pH 7.4 at 

30 ± I'C. The use of a high K^-solution during cutting and incubation of 

the slices seemed to Improve their viability, as assessed 

electrophyslologically in the same preparation. After the Incubation, a 

slice was placed in one compartment of the 2-compartment chamber and 

perfused with oxygenated modified Krebs solution (containing 1,9 mM KCl, 

all other salts were unchanged) at 0,5 ml/min. The dorsal roots and dorsal 

root ganglia were placed into the second compartment and Immersed under the 

mineral oil, Lubrlseal (Thomas Scientific) was used to ensure a leakproof 

and also electrical Isolation between the 2 compartments. A lumbar dorsal 

rootlet was placed on the two pairs of bipolar platinum electrodes: the 

distal pair was used for electrical stimulation of primary afferent fibers 

and the proximal pair for recording of the compound action potentials. The 

stimulation parameters were selected to activate both low-threshold, fast-

conducting myelinated fibers (Afi) and the high-threshold, slower-conducting 
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myelinated ( A S )  and unmyelinated (C) fibers (25-30V, 0.02-1.0 ms at 3-10 

Hz). The compound action potentials were monitored throughout the periods 

of stimulation and stored on diskettes of a digital oscilloscope (Nlcolet, 

Model 4092). Samples of perfusate (0.5 ml) were collected at regular 5-10 

mln Intervals before, during and after stimulation of the dorsal roots or 

application of tachykinins and CGRP. Samples were kept frozen at -80°C 

until derlvatlzatlon and chemical analysis. Quantification of nine 

endogenous amino acids contained In the spinal perfusate was achieved by 

reversed-phase high-performance liquid chromatography (HPLC) with 

fluorlmetrlc detection following pre-column derlvatlzatlon with o-

phthaldlaldehyde (OPA) 2-mercaptoethanol reagent (Llndroth and Hopper, 

1979). OPA 2-mercaptoethanol derivatives were produced by taking 25 /il of 

OPA reagent solution and mixing with 25 /il of amino acid mixture (standards 

or sample). After 1 mln, 150 /il of the mixture was Injected onto the 

chromatographic column for analysis. Hydroxylyslne (30 /iM) was added to 

each sample as an Internal standard. Chromatography was performed on a 15 

cm, Adsorbasphere - OPA - HR column (Alltech Associates) using a pH 5.9 

sodium acetate-tetrahydrofuran/methanol gradient. Fluorescence was 

detected with a Kratos FS 950 fluorlmeter. The amino acids measured came 

off the column in the following order: aspartate (Asp), glutamate (Glu), 

asparaglne (Asn), serine (Ser), glutamine (Gin), glycine (Gly), threonine 

(Thr), alanine (Ala) and 7-amlnobutyrlc acid (GABA) followed by 

hydroxylyslne. Results reported are the averages of duplicate runs with 

each run lasting 31 mln. Substance P (10"' to 5xlO"®M, Cambridge Research 

Blochemlcals, CRB) neurokinin A (5x10"' to 10"®M, CRB) and rat CGRP (10"® to 

10"®M, CRB) were applied into the slice perfusate for 5 mln. The calcium 
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dependence of the dorsal root stimulation-evoked and peptide-evoked amino 

acid efflux was investigated by the removal of calcium ions from the Krebs 

solution. Statistical significance has been assessed relative to control 

conditions by use of either a paired or unpaired Student's t-test, as 

appropriate. Levels of significance are Indicated as follows: * p < 0.01; 

** p < 0.005. 

Thirteen rats of both sexes taken from 2 different litters were 

injected subcutaneously with 50 mg/kg of capsaicin (Sigma) in vehicle (10% 

ethanol, 10% Tween (vol/vol) in 0.9% (wt/v) saline) 48 hr after birth. 

Eight control litter mates received equal volumes of vehicle alone. After 

a survival time of 23 to 45 days the animals were subjected to the 

experimental procedure described above. 

For SP and CGRP immunohistochemistry lumbar spinal cords from vehicle-

injected and capsaicin-treated rats were fixed with Zamboni's fixative. 

Serial, 50-/im-thick, transverse sections were cut through the spinal cord 

with a Vibratome. These sections were then processed for SP- or CGRP-like 

immunoreactivity with the Stemberger's peroxidase-antiperoxidase (PAP) 

method and commercially available SP (Incstar Corp.) or CGRP (Peninsula 

Labs.) antisera at a dilution of 1:7000 and 1:3000 respectively. Details 

of the PAP procedure have been published (Coffifild_,et al. , 1986). 

Following the PAP incubation, the sections were incubated for 7 to 10 min 

in 0.05% 3,3'-diaminobenzidine hydrochloride (DAB, Sigma) in O.IM PBS and 

0.01 hydrogen peroxide (H2O2) to obtain the specific immunoreactive label 

distinguished by a reddish-brown chromogen. The DAB-reacted sections were 

mounted on gelatin coated slides, dehydrated in ethanol, cleared in xylene 

and coverslipped with Permount for light microscopic analysis. As a 
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control for ligand specificity, spinal cord sections were processed without 

the addition of primary antisera. In this case no immunoreactivity was 

seen. 
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RESULTS 

Basal release of endogenous amino adds from spinal dorsal horn slices 

The efflux of nine endogenous amino acids-Asp, Glu, Asn, Gin, Gly, 

GABA, Ser, Thr and Ala-from the spinal cord slices into the Krebs 

perfuslon-medium occurred, and the mean basal amino acid concentrations in 

the spinal cord slice perfusate are presented in Table 1. The nine amino 

acids studied are the most prominent ones to be detected in the spinal 

slice perfusate. The amount of Gin released was the highest, at least 5-6 

times that of the next three relatively abundant amino acids, Ala, Gly and 

Ser. Glu, GABA and Thr were present in moderate amounts, whereas lower 

levels of Asp and Asn were found (Table 1). 

No significant differences in the basal release of nine-endogenous 

amino acids were detected when the spinal slices were perfused with either 

nominally zero Ca^^-containing medium (n-3; Table 1) or in those obtained 

from rats neonatally-treated with capsaicin (n-13, Table 1). 

Effects of dorsal root stimulation 

Electrical stimulation of a lumbar dorsal root produced a significant 

increase in the rate of the basal efflux of several endogenous amino acids 

(Fig. 1, Table 2). Thus, in six different slices, high intensity 

repetitive stimulation (25V pulses of 20-100/is duration applied at 3-5 Hz 

for 5 min) of a lumbar dorsal root produced a significant increase in the 

basal release of aspartate (to 160.7 ± 9.6%), glutamate (to 143.7 ± 9.5%), 

glycine (to 130.0 ± 9.6%), serine (to 145.3 ± 14.4%) and threonine (to 

141.8 ± 8.5%), whereas the levels of asparagine, glutamine, gamma- Table 1. 
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Amino acid concentrations* in the perfusate of the horizontal 
spinal cord slices. The number of observations shown in 
parentheses (/iM/ 5 min collection period) 

Amino Acid Control (n-12) Zero-Ca^'*' (n-3) Capsalcln(n-13) 

Threonine 
Alanine 

GABA 
Serine 

Aspartate 
Glutamate 
Asparaglne 
Glutamine 
Glycine 

0.25 ± 0.04 
0.51 ± 0.09 
0.10 ± 0.02 
7.20 ± 1.40 
1 .21  ±  0 .20  
0.68 ± 0.15 
1.10 ± 0.15 
0.60 ± 0.07 
1.29 ± 0.27 

0 .21  ±  0 .06  
0.59 ± 0.15 
0.21 ± 0.04 
5.30 ± 2.80 
1.30 ± 0.17 
0.61 ± 0.30 
1.09 ± 0.21 
0.56 ± 0.15 
1 .66  ±  0 .60  

0.16 ± 0.03 
0.66 ± 0.09 
0.16 ± 0.03 
6.94 ± 0.99 
1 . 2 0  ±  0 . 2 8  
0.92 ± 0.15 
1.39 ± 0.19 
0.89 ± 0.23 
1.82 ± 0.32 

"Results are presented as mean ± S.E.M. of the basal efflux for n 
experiments conducted in duplicate. 

aminobutyric acid and alanine were elevated only to smaller degrees (Fig. 

lA). The stimulation-evoked increase in the basal release of amino acids 

was rarely maintained for more than one collection period of 5 min. The 

higher increase in the rate of stimulation-evoked release of aspartate 

than of glutamate, and the increase in the efflux of endogenous GABA, Gly, 

Ser, Thr, Ala and Asn in the spinal slice perfusate are reported here for 

the first time. 

In order to evaluate whether the increased release of endogenous amino 

acids following activation of primary afferent fibers was likely to 

be of neuronal origin experiments were carried out with altered levels of 

Ca^* ions in the perfusing medium. The dependence of the dorsal root 

electrically-evoked increase in the basal release of endogenous amino acids 

upon the presence of Ca^* ions in the external medium was investigated by 
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perfusing the slices (n-3) with nominally zero-Ca*^ medium. The results 

obtained in one of those experiments are illustrated In Fig. IB. When Ca^* 

ions were omitted from the perfusing medium the synaptic transmission was 

blocked and the stimulation-evoked increase in the basal release of 

glutamate and aspartate was absent (Fig. IB, Table 2). 

SP and NKA modulate the basal and electrlcallv-evoked release of glutamate 

and aspartate 

Perfusion of spinal cord slices with lower concentrations of SP (2x10" 

for 5 mln) caused a selective and significant Increase (to 254.3 ± 

62.OX; n-8) in the rate of basal release of glutamate (Fig. 2A). With 

higher concentrations of SP (10"® to 5xlO"®M; n-3), in addition to 

glutamate, a significant and dose-dependent Increase in the basal release 

of aspartate was observed (Fig. 2B). Thus, for instance in a single 

experiment, the Increase in the basal efflux of aspartate elicited by 10"® 

and 5xlO"®M SP amounted to 150 and 270% of their control levels, 

respectively. With higher concentrations of SP the increased efflux of 

glutamate and aspartate was frequently maintained for two to three 

consecutive 5 mln collection periods. The averaged values for the SP-

caused increase in the release of glutamate and aspartate from spinal 

slices are summarized in Table 2. The levels of the seven other endogenous 

amino acids, determined in the spinal slice perfusate were not modified in 

a consistent manner by tachykinins (Fig. 2B). 
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Fig. 1. Effects of depolarizing stimuli and Ca^* on the rate of basal 
efflux of 9 endogenous amino acids. Histogram of the release of 9 
endogenous amino acids in response to electrical stimulation of a 
lumbar dorsal rootlet (25 V, 0.02-0.1 msec, 5 Hz, 5 min) relative 
to their basal efflux determined from first 2 collection periods 
prior to the first period of stimulation. The results are 
expressed as the mean percentage of the basal efflux ± SEM for 6 
experiments conducted in duplicate. A, Electrical stimulation of 
a lumbar dorsal rootlet produced a significant increase in the 
concentrations of Asp (160.7 ± 9.6%), Glu (143.7 ± 9.5%), Gly 
(130.0 ± 9.6%), Ser (145.3 ± 14.4%), and Thr (141,8 ± 8.5%), 
whereas the levels of Asn, Gin, GABA, and Ala were elevated to a 
smaller degree. B, The stimulation-evoked increase in the basal 
efflux of Glu, Asp, Asn, Gly, and Ser (solid columns, n - 2) was 
reduced or blocked in a zero Ca^* solution (hatched columns. n -
3). Statistically significant results in this and other figures 
are indicated: *p<0.01; **p<0.005. 23- to 33-day-old rats. 
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Fig. 2. SP and NKA enhance the basal efflux of endogenous glutamate and 
aspartate into the spinal perfusate. Perfusion of spinal cord 
slices with SP (2-5xlO"'M for 5 min) produced a significant 
increase in the concentration of glutamate (254.3 ± 62.0%; n-8; 
p<0.005) in the perfusate, whereas the levels of other eight amino 
acids were not significantly altered. Histogram of the efflux 
of 9 endogenous amino acids, obtained in a single experiment in 
response to addition of three different concentrations of SP to 
the perfusing medium: solid columns. SxiÔ"'H; hatched columns. 10" 
®M; dotted columns. 5xlO"®M. Bath application of SP in 
concentration of SxlO'^M markedly increased (533.6%) the basal 
efflux of glutamate, only. Higher concentrations of SP (10'® and 
SxlO'°M) , in addition to glutamate, caused a significant and dose-
dependent increase in the basal efflux of aspartate. A tendency 
for a decrease in the efflux of asparagine and glutamine was also 
observed. £, Addition of NKA (10'®M, 5 min) to the perfusing 
medium produced a marked increase in the basal efflux of aspartate 
(282.7%), glycine (222.2%) and glutamate (170.3%), whereas the 
efflux of remaining six amino acids was not significantly changed. 
A, 24- to 33-day-old rats; B, 24-day-old rat. C, 28-day-old rat. 
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The dependence of the SP-evoked Increase in the release of glutamate 

and aspartate upon external Ca^^ ions was investigated by omission of this 

ion from the perfusing medium. When the slices (n-3) were perfused with a 

nominally Ca^^-free medium, SP (SxlO'^M) still elicited a significant 

increase in the concentration of glutamate (to 198.2 ± 29.7%) in all 3 

slices examined, whereas the aspartate increase (to 141.9 ± 7.0%) was 

present in 2 out of 3 slices (Fig. 3A, Table 2). The persistence of the SP 

effect did not appear to be a consequence of an inadequate removal of 

extracellular Ca^* since the dorsal root-stimulation-evoked release of 

glutamate and aspartate was virtually abolished by the removal of external 

Ca2* (n-3). 

The effect of SP (SxlO'^M) was effectively blocked by a SP analogue, 

(D-Argi, D-Pro^, D-Trp?*, Leu^^)-SP (2xlO"^M), a claimed antagonist of 

synthetic SP (Fig. 3B). This finding suggests that the effect of SP on the 

basal efflux of glutamate is a true tachykinin receptor-mediated response. 

The possibility that NKA, a SP related tachykinin that is co-expressed 

with SP in primary sensory neurons (Dalsgaard et al., 1985), may regulate 

primary afferent transmission by modulating the basal release of glutamate 

and aspartate was investigated in five spinal slices. As shown in a single 

experiment illustrated in Fig. 2C, NKA (10"®M) produced a marked increase 

in the rate of basal efflux of aspartate (to 282.7%), glycine (to 222.2%) 

and glutamate (to 170.3%), whereas the efflux of remaining six amino acids 

was not significantly altered. The summary of the effects of NKA (5x10"' 

to 10"®M) on the basal efflux of glutamate and aspartate is presented in 

Table 2. 
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Fig. 3. Enhancement of the basal efflux of aspartate and glutamate by SP 
is not Ca^^-dependent, but is blocked by a claimed SP antagonist. 
A, Perfusion of the slices with nominally zero Ca^* solution-
containing SP (5X10"'M, 5 min) produced a significant increase in 
the concentration of glutamate (198.2 ± 29.7%; n-3) and aspartate 
(141.9 ± 7.OX; n-3) in the spinal perfusate. The concentrations 
of remaining seven amino acids were not significantly different 
from the control. Perfusion of a spinal cord slice with SP 
(5xlO"^M, 5 min) in the presence of SP antagonist, (D-Arg^, D-Pro^, 
D-Trp^'®, Leu^^)-SP (2xlO"®M, 10 min), failed to elicit an increase 
in the basal efflux of either aspartate or glutamate in the spinal 
perfusate (hatched columns). The data obtained during the 
perfusion with SP (5xlO"'M) alone are presented with the solid 
columns (the same slice). A, 26-33-day-old rats. B, 25-day-old 
rat. 
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Fig. 4. SP potentiates the dorsal root stimulation-evoked efflux of endogenous Glu and Asp. Interaction 
between the dorsal root stimulation- and the SP-evoked release of Glu and Asp was studied by 
using 2 different protocols (A and B). Left panels. Three periods of electrical stimulation 
(25V, 0.02 ms, 5 Hz for 5 min; onset of stimulation marked by arrowheads) were applied. During 
the first and third periods, the slice was perfused with a control Krebs solution, while during 
the second period, SP (SxlO'^M) was added to the perfusate. SP increased the electrically-
evoked efflux of Glu from 141 to 236% (A) and that of Asp from 185 to 228% (B) of the basal 
value. Characteristically, the peptide prolonged the duration of the electrically-evoked efflux 
from 5 to 15 min. 29-day-old rat. Right panels. Electrical stimulation of the dorsal rootlet 
(30 V, 1 ms, 0.5 Hz for 3 min) produced about 4-fold increase in the basal release of Glu (A) 
and about 2.5-fold increase in Asp (B). Addition of SP (5 x lO'^M from 3 min) to the perfusing 
medium produced a similar increase in Glu (359%) and somewhat higher increase of Asp (485%). 
However, the electrical stimulation of the primary afferents in the presence of SP resulted in a 
higher increase in the basal efflux of Glu (to 1091% of the basal release) and Asp (to 743%) 
during the first collection period if compared to the effects of either treatment alone. The 
SP-enhanced efflux of Glu and Asp lasted about 12 min, 27-day-old rat. 
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Moreover, we sought to determine whether, besides modulating the basal 

release, SP also modulates the dorsal root stimulation-evoked release of 

glutamate and aspartate from the spinal slices. Thus In four slices, the 

release during a stimulation period was compared with that measured during 

exposure of a spinal slice to SP (10"? to 10'®M) and electrical stimulation 

of a lumbar dorsal root. We found that in the presence of SP the 

electrically stimulated release of glutamate (Fig. 4A) and aspartate (Fig. 

4B), was potentiated. Characteristically, unlike the response to electrical 

stimulation that was usually limited to the first collection period, the 

SP-evoked response was prolonged, lasting 10-15 min after the first 

exposure to the peptide (Fig. 4). 

rCGRP modulates the basal and electricallv-evoked release of glutamate and 

aspartate 

We found that rat calcitonin gene-related peptide (rCGRP, 10"'M) 

caused a significant increase of the basal efflux of glutamate (to 170.5 ± 

30.6; n-4) and aspartate (to 159.5 ± 20.1; n-4), and a smaller increase in 

threonine (Fig. 5A). In addition, there was a significant decrease in the 

basal release of asparagine, whereas the levels of other five endogenous 

amino acids were increased only to a small degree. In contrast to the 

immediate elevation of glutamate and aspartate in response to electrical 

stimulation of primary afferents, the CGRP-caused increase of the basal 

release was delayed, frequently reaching a maximum 10 min after 

the first exposure of the slice to the peptide. At the second exposure to 

the same concentration of CGRP, the CGRP-effect was reduced, indicating the 

occurrence of desenzitization. 
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When calcium was removed from the perfusing medium, the CGRP-evoked 

enhancement of the basal roloaso of Glu occurred in 2 out of 4 slices 

examined, whereas the increase of Asp was present, although reduced in 

magnitude, in 3 out of 4 slices, The average of 3 experiments where the 

effects of CGRP were tested in nominally zero Ca'^ medium is presented in 

Figure SB. 

We have recently shown that CGRP enhances calcium currents of rat 

dorsal root ganglion neurons and spinal excitatory synaptic transmission 

(Ryu et al., 1988a). As Influx is intimately related to 

neurotransmitter release, a similar action of CGRP on voltage-sensitive 

Ca^* channels at central terminals of primary sensory neurons, as shown for 

the somatic membrane of ORG neurons (Ryu et al., 1988a), could increase 

neurotransmitter release and facilitate excitatory synaptic transmission. 

In support of this hypothesis we found that in the presence of CGRP (lO'^M) 

the electrically-elicited roloaso of glutamate (Fig. 6A) and aspartate 

(Fig. 6B) was increased. The CGRP-evoked response was prolonged, lasting 

about 30 min, and was oscillatory in character. 
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Fig. 5. 4. CGRP enhanced the basal efflux of aspartate and glutamate into 
the perfusate of spinal slices. Perfusion of spinal cord slices 
with CGRP (10"'M) produced a significant increase in the 
concentration of glutamate (to 170,5 ± 30.6%) and aspartate (to 
159.5 ± 20.1%) and a decrease in asparagine (to 56.2 ± 29.2%) 
whereas the levels of the remaining six amino acids were not 
markedly changed. The results are expressed as mean percent of 
the basal efflux ± SEM. for 4 experiments, fi, In 3 experiments 
the CGRP-evoked increase in the basal efflux of aspartate and 
glutamate (solid columns: before; dotted columns: after returning 
to 2mM Ca^^-medium) was not significantly altered when the slices 
were perfused with a nominally zero Ca^* medium (hatched columns). 
27-31-day-old rats. 
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Fig. 6. CGRP enhances the dorsal root stimulation-evoked efflux of endogenous glutamate and aspartate. 
A, Bath addition of CGRP (10"'M for 5 min) increased the electrically (25 V, 0.1 ms, 5 Hz for 5 
min) -evoked efflux of glutamate from about 257 to 486% relative to control. Characteristically, 
the Increase in the release oscillated and the oscillations lasted about 30 min. B, In the same 
slice, CGRP also increased the efflux of aspartate from 209 to 656% of control. Similar as with 
glutamate, the release was oscillatory in character and of prolonged duration. 29-day-old rat. 
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Effects of neonatal capsaicin treatment on the dorsal root- and oeotlde-

evoked release of endogenous amino acids 

The question of whether the enhanced release of glutamate and 

aspartate following electrical stimulation of dorsal roots and 

administration of SP, NKA and CGRP, reflects direct release from activated 

primary afferent fibers (axons and/or presynaptic endings) in the dorsal 

horn or whether it could reflect activation of secondary or tertiary cells 

in the primary afferent-dorsal horn neuronal pathways was investigated in 

slices obtained from capsaicin-treated rats. If capsaicin were to prevent 

the enhancement of the stimulation-evoked and peptide-evoked basal release 

of glutamate and aspartate, it is likely that a significant proportion of 

released amino acids would arise from sensory endings sensitive to 

capsaicin. 

Although in the present study we found that neonatal capsaicin 

treatment did not markedly alter the basal efflux of 9 endogenous amino 

acids from the spinal slices, it prevented the dorsal root stimulation-

evoked release of endogenous amino acids (Fig. 7). The stimulation-

enhanced efflux of aspartate, glutamate, asparagine, glycine and threonine 

seen in vehicle-injected control animals (n-8) was significantly reduced in 

the slices obtained from the capsaicin-treated rats (n-13; Fig. 7, Table 

2 ) .  

The effects of neonatal capsaicin treatment on the SP- and CGRP-

enhanced basal efflux of glutamate and aspartate from the spinal slices of 

rats sacrificed at 3-6 weeks of age are shown in Figs. 8 and 9 and Table 2. 

The results obtained show that neonatal capsaicin treatment prevented the 

SP-induced increase in the concentration of glutamate in the spinal 
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perfusate (Fig. 8). This result suggests that intact unmyelinated (C) and 

perhaps small myelinated (AS) primary afferent fibers may be an important 

source of released glutamate following dorsal root stimulation or SP 

administration. In contrast to the SP-effect, the CGRP-induced increase in 

the basal levels of glutamate and aspartate was not prevented in the slices 

obtained from the capsaicin-treated rats (Fig. 9). It is of interest, 

however, that CGRP-caused reduction of the basal release of asparagine seen 

in the vehicle-treated animais appears to be abolished by capsaicin 

treatment. The blockade of the SP effect on glutamate release seen in the 

capsaicin-treated rats suggests that the peptide may regulate the release 

of the excitatory neurotransmitters by acting at presynaptic sites. On the 

other side, the persistence of the effect of CGRP in the capsaicin-treated 

rats may reflect the prevalent effect of CGRP on the release of glutamate 

and aspartate from the interneurons or descending afferents to the dorsal 

horn. However, since there is significant CGRP staining left after 

capsaicin treatment (Fig. 9A,B, see also Diez Guerra et al., 1988) this 

finding may imply that subcutaneous treatment with capsaicin is not 

effective to eliminate all the CGRP-like immunoreactive primary afferent 

input. 
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Fig. 7. Neonatally applied capsaicin reduced the dorsal root stimulation-evoked release of aspartate and 
glutamate. The dorsal root stimulation-evoked increase in the release of endogenous aspartate, 
glutamate, glycine and threonine from the horizontal spinal cord slices of intact rats (solid 
columns) was absent in the slices obtained from the rats treated neonatally with capsaicin 
(hatched columns). Rats were allowed to survive 3-6 weeks after injection of Tween 
80/ethanol/saline (1:1:8) vehicle, or vehicle containing 50 mg/kg capsaicin. The results for 
control (n-6) and capsaicin (n-7) groups are expressed as mean percentages ± SEM of the 
respective basal values. Statistical difference between the release in intact and capsaicin-
treated rats: **p<0.005; *p<0.01. 23-to 45-day-old rats. 
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Fig. 8. Inmunoperoxidase staining of the rat lumbar spinal cord for SP-like immunoreactivity in control 
vehicle-injected rat (A) and neonatally capsaicin-treated rat (B). Scale bar, 100 iM . Ç, The 
SP-induced increase in the basal efflux of endogenous glutamate from the spinal cord slices 
of the intact rats (solid columns) was absent in the rats treated with capsaicin neonatally 
(hatched columns'). The results for control (n-7) and capsaicin-treated animals (n-6) are 
presented as mean percentages ± SEM of their respective basal values. Statistical difference 
between the release in the intact and capsaicin-treated rats; **p<0.005. 24- to 44-day-old rats. 
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Fig. 9. Immunoperoxidase staining of the rat lumbar spinal cord for CGRP-like immunoreactivity in 
control vehicle-injected rat (A) and neonatally capsaicin-treated rat (B). Scale bar, 100 pM. 
Ç, The CGRP-elicited increase in the basal efflux of endogenous glutamate and aspartate from 
the spinal cord slices of intact rats (solid columns) was present in rats treated with capsaicin 
neonatally (hatched columns). The results in control (n-4) and capsaicin-treated rats (n-4) are 
presented as mean percentages of their respective controls ± SEM 27-to-45-day-old rats. 
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Table 2. Summary of the effects of electrical stimulation of the dorsal rootlets and administration of SP, 
NKA, and CGRP on the levels* of endogenous aspartate (Asp) and glutamate (Glu) in the perfusate of 
the spinal slices 

Control Capsaicin 

Asp Glu n Asp Glu n 

A. Electrical stimulation 

Normal Krebs 209. .2 ± 26. 7 168. 3 ± 14.0 (13) 109. 8 ± 14. 2 109.6 ± 14.8 (7) 

Zero Ca^* solution 94. 7 ± 10. 9 101. 4 ± 7.8 (3) - -

B. Peotides 

SP (2-5 X 10-^M) 123, ,2 ± 15. .3 254, .3 ± 62.0 (8) 113. ,6 ± 18. .7 104.9 ± 19.0 (6) 

SP (1-5 X 10-®M) 181. .7 ± 40. .1 339, ,3 ± 84.2 (3) - -

SP (5 X 10-^M in zero Ca^^ 141. .9 ± 7. .0 198, ,2 ± 29.7 (3) - -

NKA (5 X 10'^ to 10-G) 179, .1 ± 35. .1 145, .3 ± 16.1 (5) - -

CGRP (10-7%) 159 .5 ± 20 .1 170 .5 ± 30.6 (4) 161. .2 ± 15 .0 138.8 ± 13.4 (4) 

'Results are presented as mean percentages ± S EM of the basal efflux. Dorsal root stimulation: 25-30 
V, 0.02-1.0 ms, 3-10 Hz for 5 min. Number of observations shown in parentheses (n represents the 
number of slices; each slice was obtained from a different animal). 
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DISCUSSION 

Dorsal root stimulation-evoked release of endogenous amino acids and the 

effects of capsaicin 

The findings of the present study confirm previous reports that dorsal 

root stimulation evokes a Ca^*-dependent release of glutamate from the frog 

(Takeuchi et al., 1983) and the newborn rat spinal cord in vitro (Kawagoe 

et al., 1986). These earlier studies examined also the evoked release of 

aspartate and found it to be less regularly observed than for glutamate, 

and statistically insignificant. On the basis of these observations, the 

suggestion was made that glutamate is the principal transmitter released by 

dorsal root stimulation (Kawagoe et al., 1986). We have extended these 

original observations by characterizing the basal and electrically-evoked 

release of glutamate and aspartate in terms of stimulus-response 

relationship, its calcium dependence, and its modulation by tachykinins (SP 

and NKA), CGRP and neonatal treatment with capsaicin. In addition, the 

possibility as to whether, besides glutamate and aspartate (Roberts, 1974; 

Takeuchi et al., 1983), other endogenous excitatory and inhibitory amino 

acids were released in vitro was investigated. The results from this study 

clearly show that besides glutamate, several endogenous amino acids. 

Including aspartate, asparagine, glycine, serine and threonine are released 

in significantly higher amounts upon high-intensity repetitive electrical 

stimulation of primary afferent fibers. It is worth noting that despite 

our finding that the basal efflux of aspartate is only about one-half that 

of glutamate, the stimulation-evoked increase in the basal release of 

aspartate appears to be similar, or even higher, than that of glutamate. 
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Two observations indicate that the electrically-evoked release of aspartate 

does not result from nonspecific changes In permeability of neuronal 

membranes. First, the release of aspartate was repeatable, and, following 

stimulation, baseline levels of released aspartate completely recovered to 

control levels. Second, the release was blocked by perfusing solution 

containing zero Ca^*. This is as expected for a process of calcium-

dependent exocytosis. We would like to suggest, therefore, that the 

stimulation-evoked release of aspartate is likely to be relevant for 

excitatory neurotransmission in the spinal dorsal horn. This suggestion is 

in agreement with a recent demonstration of aspartate-imisunoreactive axons 

in normal rat LA dorsal roots (Uestlund et al., 1989b). Although it is 

well known that L-glutamate acts as a mixed agonist at both NMDA and non-

NMDA excitatory amino acid receptors (Davies et al., 1982; Mayer and 

Westbrook, 1984) L-aspartate appears to be selective for NMDA receptors 

(Uatkins, 1981; Mayer and Westbrook, 1984). Several recent in vitro 

studies, using either brain slices or Isolated spinal cord preparations, 

have demonstrated that NMDA receptors can be activated during monosynaptic 

and polysynaptic transmission (Dale and Roberts, 1985; Forsythe and 

Westbrook, 1988; Gerber and Randic, 1989a). 

As shown in Fig. lA, electrical stimulation of dorsal roots also 

resulted in significant increases in the concentrations of glycine and 

serine in the spinal perfusate. This finding may have functional 

implications for spinal excitatory synaptic transmission and integration of 

sensory information incoming to the dorsal horn since it has been shown 

that responses of spinal neurons to the excitatory amino acid, N-methyl-D-

aspartate (NMDA), are markedly potentiated by nanomolar concentrations of 
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glycine (Johnson and Ascher, 1987). This, together with the demonstration 

that the strychnine-insensitive glycine binding site is distinct from, but 

associated with, the NMDA receptor (Bonhaus and McNamara, 1988) has 

initiated considerable interest in glycine as a modulator of NMDA-receptor 

mediated synaptic transmission (Salt, 1989; Thomson et al., 1989). 

Although the mechanisms by which glycine acts on NMDA receptors are not 

well understood (Danysz et al., 1989), Mayer et al. (1989) have recently 

presented evidence indicating that at least part of the enhancement of NMDA 

responses by glycine occurs through acceleration of recovery from 

desensitization. D-serine (a glycine analog), is able to substitute for 

glycine in preventing desensitization (Mayer et al., 1989). In this 

context, it is noteworthy that we have recently observed that the responses 

of the rat dorsal horn neurons, either acutely isolated (Murase et al., 

1989b) or in the spinal slice (Gerber et al., 1989), to NMDA, are augmented 

by 10"^ to 10"®M of glycine. Therefore, the concentration of glycine (or 

serine) of about 10'®M measured in the spinal perfusate after dorsal root 

stimulation, which probably reflects the elevated levels of glycine (and 

serine) in the extracellular space, may contribute to the enhancement of 

the NMDA receptor activity and excitatory synaptic potentials recently 

observed with glycine in a proportion of the rat spinal dorsal horn neurons 

examined in slices (unpublished observations). Because a high percentage 

(about 85%) of acutely isolated neonatal rat spinal dorsal horn neurons 

respond to NMDA (Murase et al., 1989b), variation in the concentration of 

endogenous glutamate, aspartate, glycine and serine could significantly 

influence excitatory synaptic transmission and integration of sensory 

information incoming to the spinal dorsal horn. 
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It has been shown that, besides the primary afferent fibers (Wheeler 

et al., 1966; Roberts, 1974; Takeuchl et al., 1983; Kawagoe et al., 1986), 

some descending pathways in the dorsal horn (Stone, 1979; Rustloni and 

Cuenod, 1982; Potashner and Tran, 1985; Potashner and Dymzyk, 1986) and 

some intrinsic dorsal horn interneurons (Davidoff et al., 1967; Rustioni 

and Cuenod, 1982) may use glutamate as a neurotransmitter. Therefore, the 

question of whether a proportion of the released glutamate and aspartate 

following electrical stimulation of primary afferent fibers derives from 

activation of primary sensory neurons, or whether it could reflect 

activation of secondary or tertiary cells in the dorsal horn pathways 

cannot be satisfactorily addressed by the experiments discussed above. In 

order to investigate the contribution of primary sensory neuronal glutamate 

and aspartate pools to the stimulation-evoked release of these amino acids 

we used neonatal treatment of rats with capsaicin, a neurotoxin known to 

cause degeneration of a large number of small "dark" sensory neurons 

(Jancso et al., 1977; Nagy et al., 1981). In this study, we show that 

capsaicin prevents the stimulation-evoked release of glutamate, aspartate, 

glycine and threonine, the results suggesting a possibility that a 

significant proportion of the release of these endogenous amino acids is 

likely to arise from primary afferent fibers sensitive to capsaicin. Our 

finding of capsaicin sensitivity of the stimulation-evoked glutamate 

release is in agreement with recent morphological data indicating that 

glutamate is preferentially localized in a subpopulation of small dorsal 

root ganglion cells (Cangro et al., 1985; Battaglia et al., 1987), 

unmyelinated dorsal root axons (Westlund et al., 1989a) and synaptic 

terminals in the superficial laminae of the spinal cord of rats, many of 
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which are likely to represent endings of unmyelinated (C) or small 

myelinated (AS) fibers (De Biasi and Rustioni, 1988). Thus, the 

morphological data and the results of the capsaicin release experiments 

reported in this work lend further support to the hypothesis that glutamate 

and/or aspartate is likely to be involved in the first order transmission 

of cutaneous information, particularly from C and A5-primary afferents 

(Schneider and Perl, 1985). 

Enhancement of the basal and the dorsal root stimulation-evoked release of 

endogenous glutamate and aspartate bv SP. NKA and CGRP 

The results of the experiments reported here demonstrate that 

tachykinins (SP and NKA) and CGRP induce an apparently specific, 

predominantly Ca^*-independent increase in the basal release of putative 

primary afferent transmitters, Glu and Asp. Although the enhancing and 

selective effect of SP on the release of endogenous Glu from the hemlsected 

spinal cord of newborn rats, first observed by Kawagoe et al. (1986), has 

been confirmed, the different results were obtained in regard to the 

magnitude of the SP effect, its Ca^^-dependence and the dose-related, SP-

induced release of Asp. Kawagoe et al. (1986) found that the bath 

application of SP (5-lOpM) caused an average increase In the basal release 

of glutamate of about 130%, the magnitude of the SP effect being comparable 

to the effect of dorsal root stimulation. The aspartate release Induced by 

SP was small and statistically insignificant. In addition, they found that 

the release of glutamate, but not of aspartate, was decreased or abolished 

in the perfusing medium-containing low concentrations of Ca^^ or TTX. In 

contrast to the results of Kawagoe et al. (1986), we found, that perfusion 
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of spinal cord slices with lower concentrations of SF (lO'^H) was 

accompanied by a selective and marked (2- to 3-fold) increase in the rate 

of basal efflux of glutamate. With higher concentrations of SP (10"®M), 

however, the basal release of aspartate was also augmented in a dose-

dependent manner. The SP-caused increase in the release of glutamate was 

consistently larger than that produced by the dorsal root stimulation and 

the effect could be demonstrated in the absence of external Ca^^. The 

inconsistencies between our results and those of Kawagoe et al.(1986), may 

be ascribed to methodological differences presented by their use of 

glucose-free perfusing solution, an amino acid uptake blocker (a-methyl-

aspartate), and newborn-rat hemlsected spinal cord preparation. 

In relation to the results discussed above, it is noteworthy that 

Smullin et al. (1988), using dorsal horn dialysis probe in freely moving 

rats, obseirved a higher increase in endogenous Asp than Glu in response to 

1 mM SP administration, and no increase in the basal concentration of Asp, 

Glu, Gly and taurine upon administration of 10 /im CGRP. 

The data in Fig. 2C show that an SF related tachykinin, NKA, which 

occurs in primary sensory neurons, and in an even higher concentration than 

SP in the rat spinal dorsal horn (Kanazawa et al., 1984; Brodin et al., 

1986), also increases the basal release of Glu, Asp and Gly from the rat 

spinal slices. Although in a few experiments the relative potencies of SP 

and NKA with respect to the stimulation of the basal release of Asp and Glu 

appear to be quantitatively similar, in 8 experiments SF appeared to 

increase the release of Glu more, whereas NKA preferentially increased the 

basal release of Asp (n-5). Since NKA also exhibits a potent excitatory 

action on spinal neurons that is depressed by a substance P antagonist (D-
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Argi, D-Pro^, D-Trp^*®, Leu^^)-SP, it is likely that some of the 

physiological roles that have been attributed to SP in sensory 

neurotransmission are, in fact mediated by NKA, or both tachykinins. 

The origin of the excitatory amino acids that are released and 

mechanism(s) underlying the enhancement of the release of glutamate and 

aspartate by tachykinins and CGRP have yet to be elucidated. In the 

present study, we have demonstrated that in difference to the electrically-

evoked release of glutamate and aspartate from the spinal slice, which does 

not occur when Ca^* is absent from the external medium, the enhancement of 

the basal release of the amino acids by SP and CGRP appears to be, in a 

large part, Ca^^-independent. Since the Ca^^ independence of the releasing 

action of peptide receptors seems to exclude the involvement of Ca*-

mediated exocytosis, it is possible that peptide ligand-induced 

neurotransmitter release may be mediated by second-messenger systems rather 

than depolarization-induced calcium influx. There is evidence for the role 

of protein kinase C (Nishizuka, 1984; Nichols et al., 1987; Gerber et al., 

1989) and the cyclic AMP system in neurotransmitter (Nestler and Greengard, 

1983) and peptide release. In addition, it is of interest that CCK-8 

evokes secretion of oxytocin and vasopressin from rat neural lobe, 

independent of external calcium, and that the CCK-8 action is blocked by an 

inhibitor of protein kinase C (Bondy et al., 1989). On the other hand, SP 

is known to increase hydrolysis of phosphoinositides in central neurons 

(Watson and Downes, 1983), whereas some actions of CGRP are thought to be 

mediated through activation of adenylate cyclase (Grossman et al., 1987; 

Wang and Fiscus, 1989). Two experimental results are of relevance for the 

possible second messenger mediation of the enhancement of the release of 
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glutamate by SP. First, Womack et al. (1988) have shown that in about one-

third of cultured dorsal horn neurons, SP receptor activation Increases 

cytosolic free via mobilization of intracellular Ca^* stores, and a 

suggestion was made that the intracellular pathway for the action of SP may 

involve the generation of inositol phosphate intermediates. Second, we 

have recently demonstrated (Gerber et al., 1989) that perfusion of rat 

spinal slices with phorbol esters, the agents known to activate the 

calcium- and phospholipid-dependent protein kinase C (Nishizuka, 1984, 

1986), produces an increase in the basal and electrically-evoked release of 

endogenous excitatory (glutamic, aspartic) and inhibitory amino acids 

(GÂBA, glycine). 

Besides the neuronal source (axons and/or nerve terminals), the 

peptide-caused Increase in the basal release of Glu and Asp from the glial 

cells should also be considered. The extracellular microenviroment of the 

central neurons is largely bounded by glial membranes, and glial cells have 

been postulated to influence the concentration of neurotransmitters in the 

synaptic cleft by a variety of mechanisms. Evidence exists that amino 

acids are released by high-K* solution in a Ca^*-independent manner (Drejer 

et al., 1982, 1983) and that astrocytes may be intimately involved in 

neurotransmission processes, amino acid uptake (Hertz and Schousboe., 1986; 

Hôsli et al., 1986), and they posses receptors for amino acid transmitters 

(Glu, Asp, GABA) and peptides (Bowman and Kimelberg, 1984; Kettermann and 

Schachner, 1985; Hamprecht, 1986; Torrens et al., 1986). Binding sites for 

SP were detected on glial cells of the spinal cord and SP enhances 

accummulation of labeled Inositol phosphates in cultures of cortical glial 

cells from the mouse (Torrens et al., 1986). In addition, synthetic human 
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calcitonin raises intracellular concentration of cyclic AMP in rat 

astroglia cells (Hamprecht, 1986). 

It is well established that the principal mode of inactivation of 

putative excitatory (glutamate, aspartate) and inhibitory (GABA, glycine) 

neurotransmitters released from nerve endings is by reuptake, using high-

affinity ion- and membrane potential-dependent transport systems that are 

known to operate both in neuronal and glial membranes (Fonnum, 1984; Hôsli, 

et al., 1986). Thus, another potential mechanism for the enhancement of 

the basal relase of glutamate and of aspartate by tachykinins and CGRP is 

via the electrogenic transport system, which is Ca^*-independent and would 

be expected to "release" glutamate and aspartate whenever cells are 

depolarized. It is of interest that the Gly uptake system is inhibited by 

peptides, leu- and met-enkephalin (Rhoads et al., 1984). 

It is well established that the release of classical 

neurotransmitters is controlled by autoreceptors, heteroreceptors, or 

receptors that are acted upon by co-localized substances, such as 

neuropeptides (Chesselet, 1984; Bartfai et al., 1988) and that this 

mechanism plays an important role in determining the amount of transmitter 

released per each stimulus. It was first demonstrated in the example of 

ACh/vasointestinal polypeptide (VIP) co-existence in the postganglionic 

neurons of the cat that muscarinic cholinergic autoreceptors Inhibit the 

release of both ACh and VIP. VIP, on the other hand, enhanced the release 

of ACh (Lundberg et al., 1980). VIP enhancement of ACh-evoked salivation 

in the cat submandibular gland (Lundberg et al., 1980) was followed by 

demonstration of synergistic effects of ACh and VIP in promoting 

phosphatidylinositol turnover in the cerebral cortex, ie., at the sites of 
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coexistence of ACh and VIP, Synergistic effects of 5-HT, TRH and SP in the 

ventral spinal cord have also been observed (Iverfeldt et al., 1986; 

Tremblay et al., 1986). 

The finding that glutamate and substance F coexist in primary afferent 

terminals in the superficial laminae of the rat spinal dorsal horn (De 

Bias! and Rustlonl, 1988) coupled with the demonstrated potentiation of the 

basal and stimulation-evoked efflux of glutamate and aspartate by SP and 

NKA in this study, provide evidence for a role of tachykinins in the 

regulation of Glu and Asp release. Thus, In addition to the excitatory 

postsynaptic actions of tachykinins on the dorsal horn neurons (Murase and 

Randic, 1984; Murase et al., 1989a,b) and modulation of the Ca^* 

conductances (Ryu and Randic, 1990), the tachykinins may also serve some 

Important presynaptic function through the regulation of the release of 

coexisting primary afferent transmitters. It would seem that co-release of 

excitatory amino acids and tachykinins could serve to interact 

cooperatively to result in a potentiation of depolarizing action at 

postsynaptic sites on dorsal horn neurons. These pre- and postsynaptic 

mechanisms of action of tachykinins, and other sensory peptides, may have 

important physiological implications for strengthening the synaptic 

connections in the spinal dorsal horn. Such a dual role is consistent with 

our present knowledge about multiple pre- and postsynaptic actions of 

peptides in the peripheral nervous system (Lundberg et al., 1980). 
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SECTION II. THE EFFECTS OF SUBSTANCE P AND CALCITONIN GENE-RELATED PEPTIDE 

ON THE EFFLUX OF ENDOGENOUS GLUTAMATE AND ASPARTATE FROM THE 

RAT SPINAL DORSAL HORN IN VITRO^ 

^Published as a research paper by I. Kangrga, J. S, A. Larew and M. 
Randlé. 1990. Neurosci. Let. 108; 155-160. 
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SUMMARY 

Bath applied SP (2 x 10"' to 5 x lO'^M) produced a significant increase 

in the concentration of glutamate in the spinal slice perfusate, whereas 

the efflux of aspartate increased only with a higher concentration of SP (5 

X lO'^M). The enhancement of the basal efflux of glutamate persisted in 

the absence of external Ca^*, but the effect was blocked by (D-Arg^, D-Pro^, 

D-Trp^'®, Leu^^)-SP, a SP analogue claimed to be an antagonist of synthetic 

SP. Calcitonin gene-related peptide (CGRP, lO'^M) produced a significant 

increase in the concentrations of glutamate and aspartate in the perfusate. 

Neonatal capsaicin treatment prevented the SP-induced increase in the 

release of glutamate. In contrast, the effect of CGRP was not 

significantly modified by the capsaicin treatment. These results indicate 

that SP and CGRP are capable of modulating the basal efflux of endogenous 

aspartate and glutamate and this modulation may represent one of the 

mechanisms by which these peptides contribute to primary afferent synaptic 

transmission. 
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INTRODUCTION 

Excitatory amino acids (EAA), glutamate and aspartate, appear to be 

the major excitatory neurotransmitters in the mammalian spinal cord (Mayer 

and Westbrook, 1987). Peptides, substance P (SP) and calcitonin gene-

related peptide (CGRP), seem to modulate primary afferent neurotransmission 

by acting both at presynaptic (Kawagoe et al., 1986; Ryu et al., 1988b; 

Smullin et al., 1988; Kangrga et al., 1989} and postsynaptic sites (Murase 

and Randiô, 1984; Murase et al,, 1989a,b). Glutamic acid is released upon 

stimulation of the primary afferents (Roberts, 1974; Kawagoe et al., 1986) 

and the Ca^^-dependent release of SP from primary afferent fibers has also 

been reported (Otsuka and Konishi, 1977). Although co-existence of 

glutamate and SP in some small primary sensory neurons (Battaglia et al., 

1987) and in primary afferent terminals in the superficial laminae of the 

rat spinal dorsal horn (DeBiasi and Rustioni, 1988), and of SP and CGRP in 

a proportion of small sensory neurons (Gibson et al., 1984), has been 

demonstrated by using histological methods, our understanding of the 

physiological significance of this phenomenon is still unclear. 

The objective of this study was to investigate the possibility of a 

modulation of the basal efflux of nine endogenous amino acids, including 

glutamate and aspartate, from the superfused spinal slices of the rat, in 

response to SP, CGRP and neonatally-applied capsaicin. The results have 

been presented in a preliminary form (Kangrga et al., 1989). 
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METHODS 

Experiments were performed on horizontal spinal cord slices, with 

dorsal roots and dorsal root ganglia attached, from 25 to 44-days old 

Sprague-Dawley rats, as described (Murase and Randlé, 1984; Gerber et al., 

1989; Murase et al., 1989a). Samples of perfusate (0.5 ml) were collected 

at regular 5 mln Intervals before, during and after peptide application 

and/or dorsal root stimulation. Samples were kept frozen at -80° C until 

derlvatlzatlon and chromatographic analysis. SP and CGRP were bath-applied 

into the perfusate. Capsaicin (50 mg/kg) was s.c. administered to rats on 

the second day of age. The amino acid content in the samples was 

determined by high performance liquid chromatography (HPLC) with 

fluorescence detection (Lindroth and Mopper, 1979). Prior to Injection, 

aliquots of the perfusates were derivatlzed with o-phthaldlaldehyde (CPA) 

2-mercaptoethanol reagent (Pierce). Hydroxylysine (30 /iM) was added to 

each sample as an Internal standard. Chromatography was performed on a 15 

cm Adsorbasphere-OPA-HR column (Alltech Associates) using a pH 5.9 sodium 

acetate-tetrahydrofuran/methanol gradient. Fluorescence was detected with 

a Kratos FS 950 fluorlmeter. Statistical significance has been assessed 

relative to control conditions by use of either a paired or unpaired 

Student's t test as appropriate. Levels of significance are indicated as 

follows: *p < 0.01; **p < 0.005. 
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RESULTS 

Perfusion of spinal cord slices with SP (2-5xlO"^M) was accompanied by 

a selective and a significant increase in the rate of basal efflux of 

glutamate (260.6 ± 71.2%, mean ± S.E.M., n-6), as illustrated in Fig. lA. 

With a higher concentration of SP (10"® to 5xlO"®M) the aspartate release 

was also increased (to 150% of basal efflux with lO'^H SP and to 270% with 

5xlO"®M of SP), whereas the levels of other seven endogenous amino acids 

were not significantly altered. The effect of SP was blocked by a claimed 

tachykinin receptor antagonist (D-Arg^, D-Pro^, D-Trp^*®, Leu^^)-SP. The 

latter finding indicates that the SP effect on the basal efflux of 

glutamate is probably a true receptor-mediated peptide effect. When the 

slices were perfused with a nominally Ca^*-free medium, SP still elicited a 

significant increase in the concentration of glutamate (198.2 ± 29.7%) and 

aspartate (141.9 ± 7.0%, n-2). Womack et al. (1988) have reported that SP 

can produce a prolonged elevation in intracellular concentration of Ca^* by 

mobilizing its release from intracellular stores. Thus SP-induced increase 

of glutamate efflux can perhaps be mediated by the mobilization of 

intracellular Ca^*. 

We have recently shown that CGRP enhances calcium currents of rat 

dorsal root ganglion neurons and spinal excitatory synaptic transmission 

(Ryu et al., 1988b). As Ca^* influx is intimately related to 

neurotransmitter release, a similar action of CGRP on voltage-sensitive 

Ca^* channels at central terminals of primary sensory neurons, as shown for 

the somatic membrane of dorsal root ganglion neurons (Ryu et al., 1988b), 

could increase neurotransmitter release and facilitate excitatory synaptic 
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Fig. 1. In A, perfusion of spinal cord slices with SP (2-5xlO"^M for 5 
min) produced a significant increase (*"p < 0.005) in the 
concentration of glutamate in the perfusate, whereas the levels of 
other eight amino acids were not significantly altered. The results 
are presented as mean percent of the basal efflux of nine endogenous 
amino acids from 7 experiments conducted in duplicate; S.E.M. shown 
by vertical lines. 24-to 33-day-old rats. In B, the SP-induced 
increase in the basal efflux of endogenous glutamate from the spinal 
cord slices of intact rats (solid columns) was absent in the 
neonatally-treated rats with capsaicin (hatched columns). The 
results for control (n-7) and capsaicin-treated animals (n-6) are 
presented as mean ± S.E.M. percent of their respective basal values. 
Statistical difference between the release of glutamate measured in 
the intact rats in the presence of SP compared with that which 
occurred in the rats neonatally treated with capsaicin: *p<0.005. 
24- to 44-day-old rats. 



www.manaraa.com

120 

Ci 
(/) 
ta 

0) 
CC 
w 
3 
O 
0) 
C 

B 
c 
o 
OL 
CO 

300 

200 

100 

SP 

Asp Glu Asn Gin Gly GABA Ser Thr Ala 

B 

o  
U) 
ta 
Ci  
0 )  

CC 
U)  
3 
O 
0) 
C 
ca 
c 
o 
o. 
en  

o5 

• Control SP 

E Capsaicin SP 

300 

100 

Asp Glu Asn Gin Gly GABA Ser Thr Ala 



www.manaraa.com

121 

transmission. In support of this hypothesis we have observed in four 

different slices that CGRP (10"'M) produced a significant Increase in the 

basal efflux of glutamate (170.5 ± 30.6) and aspartate (159.5 ± 20.1) and a 

smaller increase in threonine (Fig. 2). In addition, there was a 

significant decrease in the concentration of asparagine (Fig. 2). The 

levels of the other five endogenous amino acids were not significantly 

altered 

Capsaicin (8-methyl-N-vanillyl-6-noneamide) is known to cause the 

release of peptides present in C- and AS-primary afferent fibers, and when 

given neonatally causes the death of small dorsal root ganglion neurons 

(Jancso et al., 1977), many of which are known to contain peptides 

including SP and CGRP (Nagy et al., 1981; Franco-Cereceda et al., 1987). 

In the present study we found that the neonatal capsaicin treatment 

prevented the SP-induced increase in the concentration of glutamate in the 

spinal perfusate (Fig. IB), as well as the dorsal root stimulation-evoked 

increase in the release of endogenous aspartate and glutamate from the 

spinal slices. However, the CGRP-induced increase in the basal efflux of 

aspartate and glutamate was not modified in the slices obtained from 

capsaicin-treated rats. These results suggest that unmyelinated and 

perhaps small myelinated, primary afferent fibers may be an important 

source of released glutamate and/or aspartate following dorsal root 

stimulation or SP application. 
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Fig. 2. Perfusion of spinal cord slices with CGRP (lO'^M) produced a significant Increase in the 
concentration of glutamate and aspartate. In addition, there was a significant decrease in the 
concentration of asparagine. The results are expressed as mean percent of the basal efflux ± 
S.E.M. of 9 amino acids from 4 experiments conducted in duplicate; 27-to 31-day-old rats. 



www.manaraa.com

200 
Q> 
tii 

S 
0) 
oc 
(0 
3 
O 
a> 
c 
B 
c 
o 
Q. 
(0 

100 

H 
Asp Glu Asn 

• CGRP 

* 

Gly GABA Ser Thr Ala 



www.manaraa.com

124 

DISCUSSION 

The results of the experiments reported here demonstrate an apparently 

specific Ca-independent release of putative primary afferent transmitters, 

glutamate and aspartate, in response to administration of SF, the peptide 

known to influence excitatory afferent transmision in the rat spinal dorsal 

horn (Murase and Randié, 1984; Murase et al., 1989a). The question of 

whether the enhanced release of glutamate and aspartate by SP and CGRP 

reflects direct activation of primary afferent fibers, or whether it could 

reflect activation of local interneurons or descending fibers to dorsal 

horn cannot be satisfactorily addressed by the present methods. However, 

in view of the fact that the neonatal capsaicin treatment abolished the 

potentiating effect of SP on the basal efflux of glutamate, it is possible 

that glutamate derived from the primary afferent source. Conversely, since 

the enhanced basal efflux of glutamate and aspartate induced by CGRP is not 

modified by capsaicin, this finding would suggest that glutamate and 

aspartate may be derived from local interneurons or descending afferents to 

dorsal horn. In the latter context, it is of interest, that although the 

degree of depletion of CGRP and tachykinins content from the dorsal root 

ganglia by neonatal capsaicin is similar (Nagy et al., 1981; Franco-

Cereceda et al., 1987; Diaz-Guerra et al., 1988), the relative change in 

the CGRP content of the dorsal horn is much less marked (Diaz-Guerra et 

al., 1988). 

In this work the enhancing and selective effect of SP on the release 

of endogenous glutamate from the newborn rat spinal cord, first observed by 

Kawagoe et al. (1986), has been confirmed. The different results, however. 
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were obtained regarding Ca-dependence of the SP effect and the SF-induced 

release of endogenous aspartate. 

Smullln et al. (1988) using the dorsal horn dialysis probe, in rats in 

vivo, found that perfusion with a high concentration of SP (lO'^M) produced 

a two-fold increase in the extracellular concentration of aspartate, but no 

increase in glutamate, asparagine or glycine. Whilst this technique does 

provide major advantages in that it allows the investigation of various 

deep neuronal structures in freely moving or anesthetized animals, the 

inevitable tissue damage associated with passing a steel probe through the 

spinal dorsal horn tissue produces a number of problems, notably 

considerable glial invasion of the damaged tissue. 

The high concentration of SP in the laminae I and II, the area where 

small primary afferent fibers are known to terminate, and the demonstrated 

potentiation of the basal efflux of glutamate provide evidence for a role 

of SP, or a related tachykinin, in the regulation of the release of 

glutamate. Thus, in addition to the postsynaptic actions of SP on rat 

dorsal horn neurons (Murase and Randié, 1984; Murase et al., 1989a,b), the 

peptide may also have some important regulatory function in the release of 

primary afferent transmitters. Such a dual role is consistent with our 

present knowledge about the multiple actions of peptides in the peripheral 

nervous system. SP- and CGRP-produced enhancement of glutamate and 

aspartate efflux may have Important functional implications at synapses 

where the possibility of multiple signalling exists, by yielding a high 

signal-to-nolse ratio. 
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SECTION III. OUTFLOW OF ENDOGENOUS ASPARTATE AND GLUTAMATE FROM THE RAT 

SPINAL DORSAL HORN IN VITRO BY ACTIVATION OF LOW- AND HIGH-

THRESHOLD PRIMARY AFFERENT FIBERS - MODULATION BY p OPIOIDS^ 

^Submitted to Brain Research as a research paper by Ivan Kangrga and 
Mirjana Randlé. 1991. In press. 
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SUMMARY 

Possible correlation of release of endogenous glutamate (Glu) and 

aspartate (Asp) with stimulation parameters used to activate primary 

sensory neurons was examined using the rat spinal cord slice - dorsal root 

ganglion preparation and high performance liquid chromatography with 

fluorescence detection. Selective activation of the low-threshold (A/9) 

primary afferent fibers (PAF) resulted in a two-fold increase in the 

outflow of endogenous Asp and a smaller increase in the outflow of Glu from 

the rat spinal dorsal horn slices into the perfusing medium. Activation of 

both the low (Afi)- and the high-threshold (A5+C) primary afferents elicited 

additional increase in the outflow of Asp and Glu, and a marked increase in 

the Asp/Glu outflow ratio. DAGO (Tyr-D-Ala-Gly-MePhe-Gly-ol-enkephalin), 

an agonist at /i-opioid receptors, reduced the dorsal root (DR) stimulation-

evoked outflow of Asp and Glu in a naloxone-sensitlve manner. Our results 

have provided further evidence in support of contention that Glu and Asp 

act as excitatory synaptic transmitters in the spinal dorsal horn. A role 

for /i-opiold receptors in modulation of spinal processing of somatosensory 

information is indicated. 
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INTRODUCTION 

Excitatory amino acids (EAA), glutamate (Glu) and aspartate (Asp), 

are the principal neurotransmitter candidates in the central nervous system 

(Mayer and Westbrook, 1987; Kubo et al., 1990; Perschak and Cuenod, 1990) 

and spinal cord (Mayer and Westbrook, 1987; Evans, 1989; Rustioni and 

Weinberg, 1989). Although Glu has been long favored as a transmitter of 

the primary afferent fibers, anatomical and physiological evidence has 

recently emerged suggesting a role for Asp in the primary afferent 

neurotransmission. Asp has been detected by immunocytochemistry in 

approximately 15% of the unmyelinated and 4X of the myelinated axons in the 

rat L4 dorsal root (DR) (Westlund et al., 1989b), and electrically-evoked 

release of Asp has been demonstrated from the slices of medulla (Kubo et 

al., 1990) and spinal dorsal horn (Kangrga and Randié, 1990; Kangrga et 

al., 1990a,b). About 85% of acutely isolated rat spinal dorsal horn neurons 

are sensitive to NMDA (Randi6 et al., 1990) and both non-NMDA and NMDA 

receptors participate in the fast (Dale and Roberts, 1985; Gerber and 

Randi6, 1989a; Dickenson, 1990) and slow excitatory transmission in the 

dorsal horn (Gerber and Randi6, 1989b). Opioid peptides have been 

implicated in modulation of spinal segmental transmission (Jeftinija et 

al., 1986; Evans, 1989; Rustioni and Weinberg, 1989) and the presence of 

functional /i- and 5-receptors on G primary afferent neurons, capable of 

modulating release of SP, has been demonstrated (Grain and Shen, 1990; Go 

and Yaksh, 1987). 

The objective of this study was to investigate the pattern of outflow 

of endogenous Glu, Asp and glutamine (Gin) from the superfused dorsal horn 
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slice In response to selective activation of the low-threshold or both the 

low- and high-threshold primary afferent fibers by electrical stimulation 

of lumbar dorsal roots. In addition, the possibility of a modulation of 

the DR stimulation-evoked outflow of Glu and Asp by a p-opiold receptor 

agonist DAGO was examined. Some aspects of this work have been reported 

(Kangrga et al., 1990a,b). 



www.manaraa.com

133 

METHODS 

Longitudinal slices (300-400/im), with dorsal roots (DR) and dorsal 

root ganglia (LA-L6) attached, were obtained from 27 to 57-day-old Sprague 

Dawley rats (Kangrga and Randié, 1990). After 1 hr of incubation at 30±1°C 

a slice was transferred into one compartment of a 2 compartment-chamber and 

continuously perfused with oxygenated artificial cerebrospinal fluid at a 

flow rate of 0.3-0,5 mlmin"^. The dorsal roots were led across a leak-

proof partition of vaseline into the compartment filled with mineral oil 

and placed on two pairs of bipolar platinum electrodes. The distal pair was 

used for stimulation of the DR, and the proximal pair for recording and 

continuous monitoring of compound action potentials of primary afferent 

fibers. Conduction velocities, estimated from the distance between the 

centers of the two bipolar electrodes and the latency of the first negative 

deflection of a volley, were: Aa,^, 22.611.9 ms"^ and C, 0.32±0.02 ms"^, 

(n-20). DAGO (Tyr-D-Ala-Gly-MePhe-Gly-ol)enkephalin, Cambridge Research 

Biochemicals), naloxone (Du Pont), capsaicin (Sigma) and resiniferatoxin 

(RTX) (Chemsyn Science Laboratories) were bath-applied in known 

concentrations. Samples of the perfusate were collected at regular 

intervals (3-5 min) prior to, during, and after the periods of DR 

stimulation and/or chemical application, and stored at -80°C until chemical 

analysis. Solutions of drugs applied to the slice were tested for the 

content of Glu, Asp and Gin. Determination of the amino acid 

concentrations in the spinal perfusate was performed using high-performance 

liquid chromatography (HPLC) with 0-phthaldialdehyde (OPA) precolumn 

derivatization and fluorescence detection (Lindroth and Hopper, 1979). 
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Results are expressed as mean percent ± S.E.M of the basal outflow 

determined as the average of first 3 samples collected prior to 

stimulation. The statistical difference was determined by ANOVA; *p<0.05 

"p<0.01. 
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RESULTS 

Basal concentrations of amino acids detected in 3 to S min-samples of 

spinal perfusate were in the nanomolar range and the absolute values (nM) 

were 39.4±8.0 for Asp and 488.6±58.6 for Glu (n-20). In eight different 

slices, selective activation of primary afferent A)9-fibers (5-12V, 20/is, 

3Hz, 180-300 pulses), elicited a significant increase in the rate of basal 

outflow of Asp (194.2± 15.6%, "P<0.01) and Glu (148.4 ±13.8%, 'P<0.05) 

during the first collection period following the electrical stimulation of 

the dorsal roots (Fig. lA). Higher intensity of electrical stimulation 

(25-30V, 0.4-1.Cms, 0.5-1.GHz, 180-300 pulses) that recruited both primary 

afferent A5- and C-fibers increased the outflow of Asp (231.2±17.6%, 

"p<0.01) and Glu (182.9±16.5%, **p<0.01). However, the level of Gin was 

not significantly changed. 

For better assessment of the outflow of Asp and Glu observed in 

response to the differential stimulation of primary afferents, the net 

amount of Asp and Glu released in consecutive samples following A/9 or A+C 

stimulation, was calculated for six experiments (Fig. IB). Three results 

were noted; 1) Recruitment of both the low (A^)- and the low- and high-

threshold (A+C) primary afferents resulted in a marked increase in the 

absolute amounts of Asp and Glu (Fig. IB); 2) Although the absolute amount 

of Glu in the spinal perfusate significantly (**p<0.01) exceeded that of 

Asp, the relative increase in the A/9 or A+C stimulation-evoked outflow of 

Asp was higher (*p<0.05) than that of Glu (1C,D); 3) The greater increase 

in the amount of Asp relative to Glu produced by the electrical stimulation 

of A+C-afferents (720.0% and 216.3%, respectively, of that elicited by A/9-
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fiber stimulation), was reflected in an increased Asp/Glu outflow ratio. 

The Asp/Glu outflow ratio was 0.045 after stimulation of A^-afferents and 

0.145 after stimulation of A+C-afferents. 

In Fig. 1C,D, the increase in the outflow of Asp and Glu is presented 

as a function of time. Whereas the increase in the basal outflow of Asp 

and Glu, evoked by a selective low-threshold (A/9) stimulation of PAF was 

present only during the first 3 min-collection period, the outflow elicited 

by a high threshold (A+C) stimulation was somewhat greater and needed a 

longer time to recover (Fig. 1C,D). 

In order to examine whether the selective activation of small 

diameter afferents results in the increased outflow of Glu and/or Asp from 

the spinal slice, we used capsaicin (8-methyl-N-vanillyl-6-noneamide) and 

its potent analog, resiniferatoxin (RTX) (Maggi et al., 1990), as tools for 

selective activation of most of C afferent fibers. When the L4-L6 ORG were 

perfused with capsaicin (5-10 iM for 10 min, n-4) or RTX (0.1-1.0 nM for 3 

min, n-4) an increase in the outflow of Asp and Glu was measured in the 

spinal slice perfusate (Table 1). 

Superfusion of the spinal slices (n-4) with a /i-opioid receptor 

agonist DAGO did not have any consistent effect on the basal outflow of Asp 

and Glu. DAGO (5-lOpM for 10 min), however, applied 5 min prior to and 

during the period of electrical stimulation of DRs, significantly reduced 

the outflow of Asp and Glu evoked by A+C PAF stimulation (30V, 1 ms, 1 Hz 

for 5 min) in 4 different slices (Fig. 2A,B). The depressant effect of 

DAGO was effectively reversed by naloxone (Fig. 2C). This finding suggests 

that the effect of DAGO on the stimulation-evoked outflow of Glu and Asp is 

a true /i-opioid receptor mediated response. 
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Fig. 1. A, selective activation of the low-threshold primary afferent fibers (5-12V, 20ps, 3Hz, 
180-300 pulses) significantly increased the rate of basal outflow of Asp and Glu fsolid columns^ 
uring the first period following the stimulation. Recruitment of both low- and high-threshold 
PAF (25-30V, 0.4-1.0ms, IHz, 180-300 pulses) produced a greater increase in Asp and Glu (hatched 
columns). whereas Gin outflow was unaffected. The results are presented as mean percent of 
the basal outflow preceding each stimulation period ± S.E.M. for 8 experiments. 30- to 57-day-
old rats. B, the average (n-6) amount of Asp (solid column^ and Glu (hatched column) released 
in response to activation of A)9 or A+C afferents is presented. The basal outflow of Asp and Glu 
measured prior to each stimulation period has been subtracted. When A+C primary afferents 
were activated, a marked increase in the absolute amounts of Asp and Glu (702.0% and 216.3%, 
respectively, of that elicited by A/3 stimulation) in the spinal perfusate was observed. C and 
D, the time course of the outflow of Asp (C) and Glu (D) for data shown in A is presented. 
While activation of the low threshold (A)3) PAF (C-D, single arrows) produced a significant 
increase in the basal outflow of Asp and Glu during the first 3 min-collection period, the 
activation of both the low- and the high-threshold PAF (C-D, double arrows) resulted in a 
somewhat greater but characteristically prolonged increase in the outflow of both Asp and Glu. 
**:p<0.01; *:p<0.05. 
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Table 1. Summarized" effects of the perfusion of DRG (L4-L6) with 
capsaicin and RTX on the outflow of endogenous Asp, Glu and Gin from 
the spinal slices 

n Aspartate Glutamate Glutamine 

Capsaicin 4 229.5±45.1* 161.8±19.8* 104.5128.3 
(5-10a»M 
for 5-10 min) 

RTX 
(0.1-1.0 nM 4 235.7154.6 235.5149.5" 191.2157.6 
for 3 min) 

•Results are presented as mean percentages 1 SEM of the basal efflux. 
30- to 37-day-old rats. 
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Fig. 2. DAGO blockade of the DR-stimulation evoked outflow of endogenous Asp and Glu is naloxone 
sensitive. Electrical stimulation of a lumbar dorsal rootlet (30V, 1ms, IHz for 5 min; second 
set of arrows) in four experiments elicited a significant Increase (p**<0.01) in the basal 
outflow of Asp (A) and Glu (B). The evoked outflow of Asp and Glu was reduced in the presence 
of DAGO (10/iH for 10 min; first set of arrows). 33-to 34-day-old rats. C, in four experiments, 
electrical stimulation of a lumbar dorsal rootlet (30 V, 200 fis, 1 Hz for 5 min) in the presence 
of DAGO (5-10/iM for 10 min, application began 5 min prior to stimulation and lasted for 10 
min) elicited only a small increase in the basal outflow of Asp (hatched bars) and Glu (solid 
bars). However, during the combined administration of DAGO and naloxone (5-lOpM for 15-20 min, 
application started 5-10 min prior to DAGO), the dorsal root-electrical stimulation evoked a 
marked increase in the outflow of Asp and Glu. 32-to 36-day-old rats. 
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DISCUSSION 

The experiments described here demonstrate that the activation of 

both low- and high-threshold primary afferent fibers is accompanied by an 

increase in the amount of endogenous Glu and Asp released into the spinal 

slice perfusate (Kangrga et al,, 1990a,b). An interesting finding is that 

significant release of physiologically active amino acids occurs at 

relatively modest rates of stimulation. 

The possibility that Glu and/or Asp are transmitters of the primary 

sensory neurons has been frequently discussed (Rustioni and Weinberg, 1989; 

Westlund et al., 1989a,b Kangrga and Randié, 1990; Kangrga et al., 

1990a,b), although available biochemical and physiological evidence favors 

Glu rather than Asp (Evans, 1989). The result from this study indicates, 

however, that Asp release appears preferentially mediated by small, slowly-

conducting primaxry afferent fibers because of: 1. Differential release of 

Asp and Glu with the high-threshold-electrical stimulation; 2. The 

releasing effect of acutely-applied capsaicin and resinlferatoxin, the 

agents thought to selectively activate slowly-conducting, presumably 

unmyelinated fibers, and 3. Blockade of the electrically-evoked release of 

aspartate by neonatal treatment of rats with capsaicin (Kangrga and Randic, 

1990), Thus, although the anatomical distribution of Asp and Glu in the 

primary sensory neurons (Westlund et al,, 1989a,b) in conjunction with the 

results reported (Kangrga et al,, 1990a,b) strengthens the claim of 

aspartate as a transmitter candidate for small-diameter primary afferent 

fibers, the interpretation of this work is not without difficulties. 

Before it can be concluded that a causal relationship exists between 
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increased Asp and/or Glu release and activation of a specific category of 

primary afferent fibers it is essential to establish in a future work that 

increased amounts of Asp and/or Glu in the spinal slice perfusate reflect 

an increase in the amount or probability of release from activated primary 

afferent terminals, rather than a decrease in uptake, or release from other 

neuronal or non-neuronal sources. 

At the spinal level, the intrathecal administration of opiates and 

opioid peptides elicits behavioral analgesia in animals and man. Multiple 

opioid receptors which include p-, 6- and k- subtypes are present both on 

the primary sensory and dorsal horn neurons. Endogenous peptides with high 

affinity for those receptors are also present in the dorsal horn and 

descending neurons, as well as on the primary afferents where they appear 

to be preferentially associated with small diameter fibers. Available 

evidence indicates excitatory and inhibitory functions for opioids (Grain 

and Shen, 1990) in the rat spinal dorsal horn. Both presynaptic and 

postsynaptic sites of action have been suggested (Jeftinija et al., 1986; 

Go and Yaksh, 1987; Murase et al., 1982). 

In the present experiments the ii- agonist DAGO caused a marked 

reduction of the DR stimulation-evoked outflow of Asp and Glu and this 

inhibitory effect of DAGO was modified by naloxone. It should be noted that 

the stimulation-evoked release of Glu after perfusion with DAGO and 

naloxone appears to be greater than after stimulation alone. Further 

studies should assess the significance of this observation. The results 

presented indicate that /i-opioid receptors can participate in the selective 

antinociceptive actions that opioids can exert upon somatosensory 

processing at the spinal level. 
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APPENDIX. EFFECTS OF S -  AND k-OPIOID RECEPTOR AGONISTS ON THE RELEASE OF 

ENDOGENOUS GLUTAMATE AND ASPARTATE FROM THE RAT SPINAL DORSAL 

HORNi 

Introduction 

The spinal cord Is one of the major sites where opioids mediate 

nociception (Yaksh, 1984). Recent studies have established that the three 

principal types of opioid receptors, fi, S and k, are present In the spinal 

cord (Zarr et al., 1986; Traynor and Wood, 1987). Whereas the most 

numerous, ̂ -binding sites, are concentrated In substantia gelatlnosa they 

are also observed throughout laminae III, IV, V and VIII. In contrast, the 

£• and /c-blndlng sites seem to be confined to lamina I and substantia 

gelatlnosa, respectively (Morris and Herz, 1986; Mansour et al., 1988; 

James et al., 1990). Since the relative concentration of receptors gives 

little Information as to their functional Importance, It should not be 

disconcerting that the density of 5- and /c-oplold receptors In the rat 

spinal cord Is rather low when compared with p-receptors. The differences 

In the discrete distributions of the three types of opioid receptors may 

contribute to different functional roles. 

Whereas functional studies performed In the mammalian spinal cord 

support the Involvement of 5-opioid receptors In spinal antlnoclceptlon 

(Porecca et al., 1984; Rodriguez et al., 1986; Traynor et al., 1990), the 

^Thls part represents unpublished data. 
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role of K-receptors Is still not clear. Two factors have been decisive in 

advancing our knowledge of the significance of /c-receptors in the spinal 

afferent processing. First, highly selective ligands, arylacetamides 

(e.g., U50488 and PD117302) have become available (Takemori et al., 1988). 

Second, there is convincing evidence that dynorphin and related 

opioid peptides encoded by the pro-dynorphin gene, exert their effects via 

K-receptors (Millan, 1986; Mansour et al., 1988). Dynorphin-containing 

neurons are located predominantly in substantia gelatinosa, but also in 

lamina I, IV and V (Basbaum et al., 1986). Thus, «-receptors and 

dynorphin-containing neurons are strategically located for the modulation 

of nociception at the level of the spinal dorsal horn (Millan, 1990). 

Although functional evidence for a role of /c-receptors in the spinal 

afferent processing has been equivocal (Schmauss and Yaksh, 1984; Go and 

Yaksh, 1987; Leighton et al., 1988), a selective reduction in the 

nociceptive responses of cat dorsal horn neurons by dynorphin^-ia and 

U30488H has been reported (Fleetwood-Walker et al., 1988). 

5- and /c-opioid receptors are differentially coupled to ion channels. 

Opioid ligands selective for 5-receptors hyperpolarized locus coeruleus 

neurons (North et al., 1987) and reduced the duration of Ca^^-dependent 

action potential of mouse DRG neurons (Uerz and Mcdonald, 1982). Both of 

these actions are due to the enhancement of potassium current. A selective 

agonist at /c-receptors, dynorphin A, reduced the duration of Ca^^-dependent 

action potential of DRG (Werz and Macdonald, 1985) and myenteric neurons 

(Cherubini and North, 1985). The action of dynorphin was a result of a 

decrease of voltage-dependent Ca^^-current. The peptide selectively 

affected the large, inactivating N-type Ca^* channel current in the DRG 
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neurons (Gross and Macdonald, 1987). 

Thus, functional S -  (Werz and Macdonald, 1982) and /c-oploid receptors 

(Gross and Macdonald, 1987) have been demonstrated on the DRG neurons, and 

both types of receptors have been Implicated in mediating the effects of 

opioid peptides on the spinal afferent processing (Yaksh, 1984). In the 

present experiments we have examined the possibility of a modulation of the 

basal and dorsal root stimulation-evoked outflow of endogenous glutamate 

and aspartate from the spinal dorsal horn by 6- and K-opioid receptor 

agonists. 

Methods 

The experiments were performed on 28- to 34-day-old Sprague Dawley 

rats. The procedures with regard to the preparation of horizontal spinal 

cord slices, the collection of spinal perfusate samples and amino acid 

determination by HPLC, were similar to those described in Sections I, II 

an d  I I I  ( K a n g r g a  e t  a l . ,  1 9 9 0 a , b ;  K a n g r g a  a n d  R a n d i é ,  1 9 9 0 ) .  S e l e c t i v e  S -

receptor agonists, (D-Ala^,D-Leu^)enkephalin (DALEA, Cambridge Research 

Biochemicals, CRB) and (D-Pen^,D-Pen')enkephalin (DPDPE, CRB), and 

selective «-receptor agonists U50488H (Upjohn Diagnostics) and dynorpninj-is 

(CRB), were added to the bathing perfusion. 

Results 

Effects of a (-receptor agonist, DALEA, were tested on the basal 

efflux of aspartate and glutamate. Superfusion of three different slices 
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with DALEÂ (0.5-5.0 pM for 3 min) produced no consistent change in the 

outflow of endogenous aspartate and glutamate. 

Effects of electrical stimulation of lumbar dorsal rootlets (L 4 and 

5) (25-30 V, 1 ms, 1 Hz, 300 pulses) on the efflux of endogenous glutamate 

and aspartate from the spinal slice were tested in the absence and the 

presence of DPDPE (10 (M for 6 mln) in the superfusing medium. No 

significant effect of DPDPE on the dorsal root stimulation-evoked outflow 

of glutamate and aspartate was observed in three different slices. 

The effect of a selective K-receptor agonist U-50488H on the dorsal 

root stimulation-evoked outflow of glutamate and aspartate was examined In 

two slices. The Increase in the basal rate of glutamate and aspartate 

outflow evoked by dorsal root stimulation (25-30 V, 1 ms, 1 Hz, 300 pulses) 

observed in the absence of U50488H was not altered when the agent (10 /iM 

for 6 mln) was present in the superfusing medium. The effects of DPDPE and 

U-50488H on the dorsal root stimulation-evoked outflow of glutamate and 

aspartate are summarized in Table 1. 
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Table 1. Summary" of the effects of superfusion of aplnal cord slices with 
DPDPE and U50488H on the dorsal root stimulation-evoked outflow 
of endogenous glutamate and aspartate. 

Control Peptide 

n Glutamate Aspartate Glutamate Aspspartate 

DPDPE 
(10 /iM 
for 6 min) 

3 154.8119.5 204.5150.2 125.3±9.5 244.6±47.9 

U-50488H 2 164.2±45.4 168.2±9.8 170.6±32.9 159.9±31.5 
(10 pM 
for 6 min) 

'Results are presented as mean percentages ± SEM of the basal efflux. 

References 

Basbaum, A. I., Cruz, L. and E. Weber. 1986. Immunoreactive dynorphin B 
in sacral in sacral primary afferent fibers of the cat. J. Neurosci. 
6: 127-133. 

Cherubini, E. and A. North. 1985. ft and k opioids inhibit transmitter 
release by different mechanisms, Proc. Natl. Acad. Sci. USA 1860-
1863. 

Go, V. L. W, and T. L, Yaksh. 1987. Release of substance P from the cat 
spinal cord. J. Physiol. (Lond.) 391: 141-167. 

Gross, R. A. and R. L. Macdonlad. 1987. Dynorphin A selectively reduces 
large transient (N-type) calcium current of mouse dorsal root ganglion 

neurons in cell culture. Proc. Natl. Acad. Sci. USA 84: 5469-5473. 

Fleetwood-Walker, S. M., Hope, P. J., Mitchell, R., El-Yassir, N. and V. 
Molony. 1988. The influence of opioid receptor subtypes on the 
processing of nociceptive inputs in the spinal dorsal horn of the cat. 
Brain Res. 451; 213-226. 

James, I. F., Bettaney, J., Perkins, M. N., Ketchum, S. B. and A. Dray. 
1990. Opioid receptor ligands in the neonatal rat spinal cord: 



www.manaraa.com

152 

binding and In vitro depression of the nociceptive responses. Br. J. 
Pharmacol. 99: 503-508. 

Kangrga, I. and M. Randié. 1990. Tachykinins and calcitonin gene-related 
peptide enhance release of endogenous glutamate and aspartate from the 
rat spinal dorsal horn slice. J. Neurosci. 10: 2026-2038. 

Kangrga, I., Pavlakovid, G. and M. Randié. 1990. Release of endogenous 
amino acids from the rat spinal dorsal horn slice in response to low-
and high-threshold dorsal root stimulation: modulation by tachykinins 
and CORP. Proc. XIIntl. Congr. Pharmacol. (lUPHAR). Eur. J. 
Pharmacol. 

Kangrga, I., Pavlakovié, G. and H. Randié. 1990. Neuropeptides modulate 
the release of endogenous amino acids from the rat spinal dorsal horn. 
Soc. Neurosci. Abstr. 16: 853. 

Leighton, G. E., Rodriguez, R. E., Hill, G. E. and J. Hughes. 1988. k-
Opiold agonists produce antinoclception after i.v. and i.e.v., but 
not intrathecal administration in the rat. Br. J. Pharmacol. 93: 
553-560. 

Hansour, A., Khachtaurian, H., Lewis, M. E. Akil, H. and S. Watson. 1988. 
Anatomy of CNS opioid receptors. Trends Neurosci. 11: 309-314. 

Hillan, M. J. 1986. Multiple opioid systems and pain: A review. Pain 27: 
303-347. 

Hillan, M. J. 1990. K-Opiold receptors and analgesia. Trends in 
Pharmacol. Sci. 11: 70-76. 

Morris, B. J. and A. Herz. 1987, Distinct distribution of opioid receptor 
types in rat lumbar spinal cord. Naunyn-Schmiedeberg's Arch. 
Pharmacol. 336: 240-243. 

North, A., Williams, J. T., Surpenant, A. and C. Macdonald. 1987. and S  
receptors belong to a family of receptors that are coupled to 
potassium channels. Proc. Natl. Acad. Sci. USA 87: 5487-5491. 

Porecca, F., Heyman,J. S., Mosberg, H. J., Omnas, J. R. and J. L. Vaught. 
1984. Role of /i and S opioid recptors in the supraspinal and spinal 
analgesic effects of (D-Pen^, D-Pen')enkephalin in the mouse. J. 
Pharmacol. Exp. Ther. 230: 341-348. 

Rodriguez, R. E., Leighton, G., Hill, R. G and J. Hughes. 1986. In vivo 
evidence for spinal delta-opiate receptor-operated antinoclception. 
Neuropeptides 8: 221-241. 

Schmauss, C. and T. L. Yaksh. 1984. In vivo studies on spinal opiate 
receptor sytems mediating antinoclception. J. Pharmacol. Exp. Ther. 
228: 1-12. 



www.manaraa.com

153 

Takemori, A. E., Ho, B. Y., Naeseth, J. S. and P. S. Portoghese. 1988. 
Norblnaltorphlmlne, a highly selective kaooa-opioid decreases 
sensitivity of cultured rat dorsal root ganglion neurones to opioid 
peptides selective for p- and £-opiate receptors. Nature (Lond.) 299: 
730-733. 

Werz, M. A. and R. L. Macdonald. 1985. Dynorphin and neoendorphln 
peptides decrease dorsal root ganglion neuron calcium-dependent action 
potential duration. J. Pharmacol. Exp. Ther. 234: 49-56. 

Yaksh, T. L. 1984. Multiple spinal opioid receptor systems. Adv. Pain 
Res. Ther. 6: 197-215. 



www.manaraa.com

154 

SECTION IV, EFFECTS OF PHORBOL ESTERS ON THE BASAL AND EVOKED RELEASE OF 

PUTATIVE ENDOGENOUS AMINO ACID NEUROTRANSMITTERS FROM THE RAT 

SPINAL DORSAL HORN^ 

^This section represents experimental results obtained by I. Kangrga that 
constitute a part of a published research paper by G. Gerber, I. Kangrga, 
P. D. Ryu, J. S. A. Larew and M. Randlé. 1989. J. Neuroscl. 
9: 3606-3617. 
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INTRODUCTION 

It is presently an accepted idea that hydrolysis of membrane 

phosphoinositides is one means by which some neurotransmitters may mediate 

their actions at synapses (Nishizuka, 1984, 1986; Berridge, 1987). One of 

the products of inositol phospholipid metabolism is 1,2- diacylglycerol 

(DAG), which has been shown to activate protein kinase C (PKC) by 

increasing the affinity of the enzyme for Ca^* ions and phospholipids in 

such a manner that it becomes fully active without a net increase in the 

intracellular concentration of Ca^* (Takai et al., 1979; Kishimoto et al., 

1980; Nishizuka, 1984, 1986). This action of diacylglycerol is mimicked by 

membrane-permeant, tumor-promoting phorbol esters (Castagna et al., 1982). 

Fhorbol esters seem to cause a dramatic shift in the intracellular 

localization of PKC in a variety of cell types showing an increase in 

membrane-associated kinase activity and a decrease in the cytosolic and 

soluble fractions. There is strong evidence that the cellular receptor for 

the phorbol esters is C-kinase (Niedel et al., 1983; Sando and Young, 

1983). When activated by diacylglycerol, or the phorbol esters, the C-

kinase phosphorylates specific substrate proteins that contribute to 

various cellular processes including neurotransmitter release (Wu, et al., 

1982; Gispen et al., 1985; Nichols et al., 1987) and receptor transducing 

mechanisms (Sorensen et al., 1981; Kristjansson et al., 1982; Rodnight and 

Perrett, 1986; Sladeczek, 1988). PKC is present in high concentrations in 

the mammalian brain (Inoue et al., 1977; Takai et al., 1979), where it 

shows differential regional and cellular localization, with high levels in 

presynaptic terminals (Girard et al., 1985; Wood et al., 1986; Worley et 
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al., 1986a,b; Mochly-Rosen et al., 1987). It is now clear that PKC is a 

family of closely related but distinct enzymes (Huang et al., 1986), found 

in neuronal and glial cells (Mochly-Rosen et al., 1987). 

The finding that the spinal dorsal horn contains high levels of 

binding sites for phorbol esters (Mantyh et al., 1984) and that PKC is 

present in the rat spinal dorsal horn (Worley et al., 1986a; Mochly-Rosen 

et al., 1987) raised the possibility that PKC may play a functional role in 

sensory transmission both in the release of putative neurotransmitters, and 

also in the signal transduction at various subclasses of excitatory amino 

acid receptors. Since PKC activation can be mediated directly by phorbol 

esters, in the absence of phosphoinositide breakdown, we used these agents 

to examine the effects of the enzyme activation on basal and evoked release 

of endogenous excitatory (glutamate, aspartate) and inhibitory (gamma-

aminobutyric acid, glycine) amino acids. Preliminary reports of some 

aspects of this work have been published (Gerber et al., 1988). 
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METHODS 

Slices were obtained from Sprague-Dowley rats (14-32 days old) by 

using a technique that has been described In detail elsewhere (Murase and 

Randlc, 1983, Urban and Randlc, 1984). After the animal was anesthetized 

with ether a segment of the lumbosacral (L5-S1) spinal cord was dissected 

out and sectioned with a Vlbratome to yield one horizontal slice, 300-400 

fim thick, with attached dorsal roots and ganglia. After the Incubation for 

one hour in oxygenated (95% O2 + 5X CO2) control Krebs solution (in mM) : 

NaCl, 124; KCl.S; KHjPG*, 1.2; CaCl2,2.4; MgSO«, 1.3; NaHCGj, 26, glucose, 

10, pH 7.4 at 30 ± 1 "C, a slice was placed in one compartment of the 2-

compartment chamber where it was submerged beneath an oxygenated 

superfusing medium (total volume 1ml) containing lowered concentration of 

potassium ions (1.9 mM KCl). The dorsal roots with attached dorsal root 

ganglia were placed into the second compartment and immersed under the 

mineral oil. Lubriseal (Thomas Scientific) was used to ensure a leak-

proof, and also electrical isolation between the two compartments. The 

dorsal roots were placed on two pairs of bipolar platinum electrodes; the 

distal pair was used for electrical stimulation and the proximal pair for 

recording of compound action potentials of the primary afferent fibers. 

The compound action potentials were monitored throughout the periods of 

stimulation and stored in a Tektronix (5113) oscilloscope and later 

photographed. Samples of perfusate (1 ml) were collected at regular 10 min 

intervals before, during and after stimulation of the dorsal roots and/or 

phorbol ester application. Samples were kept frozen at -80°C until the 

derivatization and chemical analysis. Phorbol esters were applied into the 
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slice perfusate for 10 min in known concentrations. The amino acid content 

in the samples was determined by high performance liquid chromatography 

(HPLG) with fluorescence detection (Lindroth and Hopper, 1979). Prior to 

injection, aliquots of the perfusate were derivatized with o-

phthaldialdehyde (OPA) 2-mercaptoethanol reagent. Ethanolaroine was added 

to each sample as an internal standard. Chromatography was performed on a 

15cm Adsorbasphere-OPA-HR column (Alltech Associates, Deerfield, IL) using 

a pH 5.9 sodium acetate/tetrahydrofuran/methanol gradient. Fluorescence 

was detected with a Kratos FS 950 fluorimeter. The amino acids measured 

came off the column in the following order: aspartate, glutamate, 

asparagine, serine, glutamine, glycine, threonine, alanine and 7 -

aminobutyric acid (GABA). Results reported are the average of duplicate 

runs with each run lasting 31 minutes. 

Stock solutions of phorbol esters (Sigma Chemical Co., St. Louis, 

Mo), 4^-phorbol-12, 13- dibutyrate (PDBu), and 4a-phorbol-12, 13-

didecanoate (AaPDiDec) of lO'^M were made in dimethyl sulfoxide, or in 

distilled water for 4/9-phorbol-12-13-diacetate (PDAc), and then frozen in 

aliquots to be used in single experiments. The aliquots were diluted in 

oxygenated Krebs solution prior to bath administration. Results are 

expressed as the mean percent ± SEM of the basal outflow determined as the 

average of 3 samples collected prior to stimulation and/or phorbol ester 

application. The statistical difference was determined by paired Student's 

t test: *p<0.05. 
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RESULTS 

Presynaptic modulation of the release of endogenous amino acids bv phorbol 

esters 

The electrophysiological data indicate that phorbol esters can Induce 

or increase the release of putative neurotransmitters in the rat spinal 

dorsal horn (Gerber et al., 1988, 1989). Since excitatory synaptic 

transmission is augmented in the dorsal horn by phorbol esters (Gerber et 

al., 1987, 1989), we examined the effects of phorbol esters on the release 

of nine endogenous amino acids, including putative excitatory 

neurotransmitters (glutamate, aspartate) and putative inhibitory 

neurotransmitters (gama-aminobutyric acid and glycine). Addition of 5x10" 

'M 4aPDiDec, a phorbol ester analog that does not activate PKC, had no 

effect on the basal release of six endogenous amino acids (Fig. lA). 

However, in the presence of an active phorbol ester, PDBu (5xlO"®M), a 

significant but transient (10 mln) Increase in the basal release of 

endogenous glutamate and aspartate (Fig. IB) was observed (p>0.05, n-4). 

In addition, the rates of release of glycine, serine, threonine and alanine 

were also elevated (n-4). Another active phorbol ester, PDAc (5 x lO'^M), 

produced a marked but transient Increase in the dorsal root stimulation-

evoked release of endogenous glutamate and aspartate (Fig. IC, n-2) from 

the spinal cord slice. The rates of release of glycine, GABA, serine, 

threonine and alanine were also elevated but to a smaller degree. Although 

the basal release of asparaglne was little modified (Fig. IB), the evoked 

release was reduced (Fig. IC). 
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Fig. 1. Fhorbol esters enhance both basal and evoked release of endogenous 
amino acids. Column graphs of amounts of rates of release of 
endogenous amino acids during administration of phorbol esters in 
the rat horizontal spinal cord slice preparation are expressed as 
percentages of the average values measured during the 3 rest 
periods preceding the treatment. A, Addition of 4a-PDlDec (5 x 
lO'^M for 10 min), a phorbol ester analog that does not activate 
PKC, had no effect on the basal release of 6 endogenous amino 
acids. B, Bath applied PDBu (5 x 10"®M for 10 min) enhances the 
resting release of glutamate (Glu) and aspartate (Asp) in the 
spinal cord slice. In addition, the rates of release of glycine 
(Gly) serine (Ser), threonine (Thr), and alanine (Ala) were also 
elevated. The bars represent the SEM (n-4). Significant (p<0.05) 
changes are marked with asterisks. C, Phorbol esters produced a 
marked but transient increase of the dorsal root stimulation-
evoked release of endogenous glutamate and aspartate. The rates 
of release of glycine, GABA, serine, threonine and alanine were 
also elevated but to a smaller degree. A lumbar dorsal root was 
electrically stimulated (25 V, 40 psec, 5 Hz for 5 min) either in 
the absence (hatched columns) or in the presence of bath- applied 
PDAc (5 X lO'^M, solid columns). Amounts of rates of release of 
various amino acids obtained during the stimulation periods are 
expressed as percentages of the average values measured during the 
rest 3 periods preceding stimulation. 
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DISCUSSION 

One mechanism Chat could account for the enhancement of excitatory 

synaptic transmission produced by phorbol esters in the spinal dorsal horn 

(Gerber et al., 1987, 1988, 1989) is that the nerve terminals increase 

secretion of neurotransmitters on PKC activation as do other secreting non-

neural (Knight and Baker, 1983; Focotte et al., 1985) and neural cells 

(Tanaka et al., 1984; Osses et al., 1986; Feuersteln et al., 1987; Haimann 

et al., 1987; Shaplra et al., 1987; Versteeg and Florljn, 1987). In this 

study, we have presented neurochemical data showing that phorbol esters 

enhance the basal and the depolarization-evoked release of endogenous amino 

acids, including putative excitatory (glutamate and aspartate) and 

Inhibitory (GABA, glycine) synaptic mediators from the rat dorsal horn 

slices. Enhancement in basal (Publlcover, 1985; Eusebl, et al., 1986; 

Aniksztejn et al., 1987; Halenka et al., 1987) and evoked release of 

various putative transmitters (glutamate, acetylcholine, dopamine, 

norepinephrine, serotonin) caused by phorbol esters has been also reported 

(Zurgll and Zlsapel, 1985; Allgaler et al., 1986, 1988; Allgaler and 

Hertting, 1986; Lynch and Bliss, 1986; Feuersteln et al., 1987; Shaplra et 

al., 1987). Furthermore, oleoyl-acetylglycerol, another activator of PKC, 

enhances release of glutamate from synaptosomes derived from hippocampus 

(Lynch and Bliss, 1986). In agreement with these data are the findings 

that phorbol esters enhance the frequency of "spontaneous" EPSPS In the 

spinal dorsal horn neurons (Gerber et al., 1989), rat hlppocampal neurons 

(Malenka et al., 1987), and of miniature end-plate potentials at the frog 

neuromuscular junction (Publlcover, 1985; Eusebl, 1986). 
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The effects of phorbol esters on neurotransmitter release appear to be 

mediated by the activation of PKC since inactive phorbol analogs have no 

effect on synaptic transmission (Kuo et al., 1980; Castagna et al., 1982), 

however, an action of phorbol esters independent of PKC cannot be ruled out 

entirely (Bell et al., 1985; Hollingsworth et al,, 1985; Fink et al., 

1988). Modulatory effects of phorbol esters, such as blockade of the 

uptake systems for neurotransmitters or interference with the autoreceptor-

mediated negative feedback circuits, have been reported. 

Although, our results suggest that in the rat spinal dorsal horn 

protein kinase C may have a role in controlling the release of putative 

excitatory and inhibitory neurotransmitters, the source of amino acids 

release and the Identity of endogenous substances participating in this 

effect is presently unknown. The increased release of endogenous amino 

acids is consistent with a presynaptic (terminal) site of action, but it 

also could be explained by enhanced interneuronal activity. 

The precise biochemical mechanism underlying the enhancement of 

transmitter release produced by phorbol esters is as yet not clear. There 

is evidence that kinase C activation enhances the Ca^*-sensitivity of the 

secretory process in non-neural cells (Knight and Baker, 1983; Pocotte et 

al., 1985), although it is not clear whether the enzyme is a mediator or 

modulator of secretion. It has been also shown in non-neural cells (Rink 

et al., 1983, Di Virgillo et al., 1984) that activation of PKC by phorbol 

esters or 1,2-oleoyl-acetylglycerol (OAG) can stimulate secretion without 

raising cytosolic Ca^* levels. The evidence for the role of PKC in 

neurotransmitter release is less compelling. Augustine et al.(1986) 

suggested that the enhancing effect of kinase C activation at the squid 
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giant synapse may be due to a broadening of the presynaptic action 

potential, because of a decrease In K* conductance. Since the potentiation 

of synaptic transmission was absent when the presynaptic terminal was 

voltage-clamped It was suggested that kinase C is not a mediator, but a 

modulator, of a transmitter release. The spike broadening effect of 

phorbol esters seen in the rat dorsal horn cells in our work (Gerber et 

al., 1989), and also in the CAl hlppocampal pyramidal cells (Storm, 1987) 

may contribute to the enhancement of synaptic transmission caused by 

phorbol esters, provided a similar mechanism operates in the synaptic 

terminals of primary afferent fibers. Thus, a prolonged spike in the 

synaptic terminal will allow more Influx of Ca^* ions during the action 

potential and this will in turn lead to the increased release of 

transmitter. Other possible mechanisms involved include diminished 

sequestration of internal Ca^*, or its release from internal stores 

(Nlshizuka, 1986), increase of Ca^* Influx through voltage-dependent Ca^* 

channels (De Rlemer et al., 1985; Llpscombe et al. 1988; but see Rane and 

Dunlap, 1988) or changes in the properties of the Ca^^-activated K*-

channels (Baraban et al., 1985; Malenka et al., 1986b). 

The phosphorylation of nerve terminal proteins Involved in exocytotic 

release, may be a mechanism of the FKC-augmenting action in the 

neurotransmitter release. The presence of a presynaptlcally located PKC 

(Girard et al., 1985), and the phosphorylation of several brain proteins, 

including an 87kOa substrate by PKC during depolarization has been 

demonstrated (Wu et al., 1982). Phosphorylation of the 87 kDa substrate by 

phorbol ester-activated PKC in synaptosomes occurs in parallel with the 

enhancement of stimulation-elicited neurotransmitter release. In contrast. 
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the Inactive Aa-phorbol esters were without effect either on release or 

phosphorylation (Nichols et al., 1987). In addition, high-K*-evoked 

increase in neurotransmitter release in the hippocampus correlates well 

with the degree of phosphorylation of B-50 protein (Versteeg and Florijn, 

1987). 

In summary, we would like to suggest that our finding of the 

enhancement of the basal and the stimulation-evoked release of putative 

excitatory and inhibitory synaptic mediators from rat dorsal horn slices 

caused by phorbol esters indicates that PKC may be involved in the 

presynaptic modulation of the basal and the depolarization-evoked 

neurotransmitter release. 
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SECTION V. ACTIONS OF (-)-BACLOFEN ON RAT DORSAL HORN NEURONS% 

^Submitted to Brain Research as a research paper by I. Kangrga and M. 
Randié. 1991. 
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SUMMARY 

The actions of a GABAg agonist, (-)-baclofen, on the 

electrophysiological properties of neurons and synaptic transmission In Che 

spinal dorsal horn (laminae I-IV) were examined by using Intracellular 

recordings In spinal cord slice from young rats. In addition, the effects 

of baclofen on the dorsal root stimulation-evoked outflow of glutamate and 

aspartate from the spinal dorsal horn was examined by using high 

performance liquid chromatography (HPLC) with flourimetrie detection. 

Superfusion of baclofen (5nM to 10/iM) hyperpolarlzed, in a stereoselective 

and bicuculllne-insensitive manner, the majority (86%) of tested neurons. 

The hyperpolarizatlon was associated with a decrease in membrane resistance 

and persisted in a nominally zero-Ca^*, lOmMg^*- or a TTX-containing 

solution. Our findings Indicate that the hyperpolarlzing effect of 

baclofen is probably due to an increase in conductance to potassium ions. 

Baclofen decreased the direct excitability of dorsal horn neurons, enhanced 

accommodation of spike discharge, and reduced the duration of Ca^*-

dependent action potentials. Baclofen depressed, or blocked, both 

excitatory (EPSPs) and inhibitory postsynaptic potentials (IPSPs) evoked by 

electrical stimulation of the dorsal roots. Spontaneously occurlng EPSPs 

and IPSPs were also reversibly depressed by baclofen. Whereas baclofen did 

not produce any consistent change in the rate of the basal outflow of 

glutamate and aspartate, the stimulation-evoked release of the 

amino acids was blocked. The present results suggest that baclofen, by 

activating GABAg receptors, may modulate spinal afferent processing in the 

superficial dorsal horn by at least two mechanisms: 1. Baclofen depresses 
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excitatory synaptic transmission primarily by a presynaptic mechanism 

Involving a decrease In the release of excitatory amino acids, and 2. At 

higher concentrations, the hyperpolarization and Increased membrane 

conductance may contribute to the depressant effect of baclofen on 

excitatory and inhibitory synaptic transmission in the rat spinal dorsal 

horn. 
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INTRODUCTION 

Baclofen, a ̂ -p-chlorophenyl analogue of 7-aminobutyric acid (GABA), 

is a highly selective agonist at GABAg receptors (Bowery et al., 1980, 

1984; Bowery, 1989). Baclofen inhibits neurotransmission at peripheral 

(Peng and Frank, 1989) and central excitatory and inhibitory synapses 

(Lanthorn and Cotman, 1981; Ault and Nadler, 1982; Olpe et al., 1982; Inoue 

et al., 1985a; Howe et al,, 1987; Connors et al., 1988), including primary 

afferent terminals in the spinal cord (Pierau and Zimmermann, 1973; Fox et 

al., 1978; Jeftinija et al., 1986, 1987; Kangrga et al., 1987). Pre- and 

postsynaptic inhibitory effects of baclofen (Bowery et al., 1980; Ault and 

Nadler, 1982; Olpe et al., 1982; Newberry and Nicoll, 1984a,b, 1985; 

Gâhwiler and Brown, 1985) have been demonstrated. Presynaptically, 

baclofen is known to inhibit the release of neurotransmitters such as 

excitatory amino acids (Potashner, 1979; Johnston et al., 1980; Collins et 

al., 1982; Huston et al., 1990), noradrenaline and dopamine (Bowery et al., 

1980), peptides (Bowery, 1989), as well as GABA, via GABA autoreceptors 

(Neal and Shah, 1989). The presynaptic inhibitory action may involve a 

reduction in calcium entry (Dunlap, 1981; Dunlap and Fischbach, 1981; 

Cherubini and North, 1984; Heinemann et al., 1984; Schlichter et al., 1984; 

Dolphin and Scott, 1986; Green and Cottrell, 1988). In addition, baclofen 

has a potent postsynaptic hyperpolarizing action (Misgeld et al., 1984; 

Newberry and Nicoll, 1984; Pinnock, 1984; Jeftinija et al., 1986; Kangrga 

et al., 1987; Osmanovic and Shefner, 1988) involving an increase in 

conductance for potassium ions (Gâhwiler and Brown, 1985; Inoue et al., 

1985b; Newberry and Nicoll, 1985; Howe et al., 1987; Lacey et al., 1988). 
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Available evidence supports the concept that excitatory amino acids, 

glutamate and aspartate, are the principal excitatory neurotransmitter 

candidates of the primary afferent fibers (Mayer and Westbrook, 1987; 

Evans, 1989; Kangrga et al., 1990a,b; Kangrga and Randl6, 1991), whereas 

GABA, acting at GABA* and GABAg receptors, has been implicated in 

presynaptic and postsynaptic inhibitory transmission in the spinal cord 

(Eccles et al., 1963; Curtis et al., 1971, 1977; Randié, 1981; Nedeljkov 

and Randié, 1982; Bowery, 1989). Levels of GABA (Miyata and Otsuka, 1972; 

Hunt et al., 1981; Kaduri et al., 1987, Magoul et al., 1987; Todd and 

McKenzie, 1989) and the GABA synthesizing enzyme, glutamate decarboxylase 

(GAD) (Graham and Apprison, 1969, McLaughlin et al., 1975; Barber et al., 

1978, 1982), are high in the superficial laminae (I-III) of the dorsal 

horn, an area where primary afferent fibers terminate (Light and Perl, 

1979). Some GAD-positlve terminals are presynaptic to primary afferent 

terminals (Barber et al., 1982) but others make axodendritic or axosomatic 

synapses with dorsal horn Interneurons (McLaughlin et al,, 1975; Barber et 

al., 1978, 1982, Magoul et al., 1987). Although a subpopulation of primary 

sensory neurons seems to contain GABA (Roy and Philippe, 1989), the major 

source of GABA- and GAD-lramunoreactlvity in the superficial dorsal horn is 

of Interneuronal origin, the islet cells being the main neuronal source 

(Todd and McKenzie, 1989). High density of GABAg but not GABA* receptors 

has been demonstrated in the superficial dorsal horn (Bowery et al., 1987) 

and neonatal capsaicin treatment reduces the density of this receptor band 

by 40 to 50% (Price et al., 1984). 

Early studies have demonstrated that intravenous or iontophoretic 

application of (-)-baclofen has a potent depressant effect on spontaneous 
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and evoked discharge of motoneurons and Interneurons (Plerau and 

Zlmmermann, 1973; Curtis et al., 1974, 1981; Henry and Ben-Ari, 1976; Fox 

et al., 1978; Ono et al, 1979; Davles, 1981; Henry, 1982; Curtis and Malik, 

1985) In the cat spinal cord, without altering their passive membrane 

properties or responsiveness to substance P or glutamate (Plerau and 

Zlmmermann, 1973; Fox et al., 1978). These results suggested a presynaptic 

action of (-)-baclofen and were supported by the findings that (-)-baclofen 

or GABA, acting at GABAg receptors, decrease the duration of calcium action 

potential (Dunlap, 1981, 1984; Dunlap and Flschbach, 1981; Desarmenlen et 

al., 1984; Schllchter et al., 1984) and inhibit voltage-dependent calcium 

currents (Dunlap and Flschbach 1981; Dolphin and Scott, 1986; Green and 

Cottrell, 1988) In the primary sensory neurons. In addition, a direct 

hyperpolarlzlng effect of (-)-baclofen on neurons in the superficial 

(Yoshimura and Jessel, 1989) and deep dorsal horn (Jeftinija et al., 1986, 

1987, Kangrga et al, 1987; Allerton et al., 1989), as well as in 

motoneurons (Wang and Dun, 1990), has been reported. Existence of two 

pharmacologically distinct types of GABAg receptors In the hippocampus 

(Dutar and Nicoll, 1988) and in the spinal cord (Kerr et al., 1987; Wang 

and Dun, 1990) has been recently suggested. A phosphonic derivative of 

baclofen, phaclophen, selectively blocked the (-)-baclofen-caused reduction 

of monosynaptic excitation of spinal interneurons (Kerr et al., 1987) and 

excitatory and inhibitory synaptic potentials of spinal motorneurons (Wang 

and Dun, 1990). 

In the present experiments, we have attempted to further characterize 

the presynaptic and postsynaptic actions of baclofen in the rat spinal 

dorsal horn (laminae I-IV) by examining the effects of this agent on basal 
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and evoked release of glutamate and aspartate, on passive and active 

membrane properties of rat spinal dorsal horn neurons and on excitatory and 

Inhibitory synaptic transmission. Some aspects of this work have already 

been communicated (Jeftlnlja et al., 1986, 1987; Kangrga et al., 1987). 
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METHODS 

Horizontal spinal cord slices were obtained from 13- to 35-day-old 

Sprague Dawley rats by using a technique described previously (Gerber et 

al., 1989, Murase and Randié, 1983; Urban and Randié, 1984), After the 

animal was anesthetized, a segment of the lumbosacral (L3-S1) spinal cord 

was dissected out and sectioned along the longitudinal axis with a 

Vibratome to yield one 300 to 400pm thick horizontal slice with dorsal 

roots and/or dorsal root ganglia (DRG), and a length of the sciatic nerve, 

attached. After 1 hr incubation in oxygenated (95X02 + SXCOg) control 

solution (inmM): NaCl, 124; KCl, 5; KHgPO*, 1.2; CaClg, 2.4; MgSO*, 1.3; 

NaHCOg, 26; glucose, 10; pH 7.4 at 30 ± 1° C, the slice was transferred 

into a recording chamber where it was continuously perfused at 3 to 4 

mlmin'^ with oxygenated modified control medium (containing 1.9 mM KCl, 

all other salts were unchanged). Conventional electrophysiological 

techniques were used for intracellular recording from and stimulation of 

neurons in the dorsal horn (laminae I-IV). Neurons were impaled with 

fiber-filled glass microelectrodes that contained 4 M potassium acetate (pH 

7.2) and had DC impedances of 80-120 MO, by oscillating the capacity 

compensation circuit of the amplifier (Neurodata, IR 281). Dorsal horn 

neurons were activated either directly with a DC current injection (0.2 to 

2 nA) via the bridge circuit, or synaptically by electrical stimulation of 

the dorsal rootlets (L4 to L6) with bipolar platinum electrodes. Data were 

recorded on a Gould Brush pen recorder (model 220) or stored on floppy 

discs by a Nicolet digital oscilloscope (model 4092) until processed and 

printed out onto a digital plotter. 
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In the release experiments, after the incubation, a slice was placed 

in one compartment of the 2-compartment chamber and continuously perfused 

with oxygenated modified Krebs solution (1.9 mM KCl) at 0.3-0.5 mlmin"^. 

The dorsal roots were led across a leak-proof partition of vaseline into a 

compartment filled with mineral oil and placed on the 2 pairs of bipolar 

platinum electrodes: the distal pair was used for electrical stimulation of 

the primary afferent fibers, and the proximal pair for recording of the 

compound action potentials. Samples of perfusate were collected at regular 

3 min intervals prior to, during, and after stimulation of the dorsal roots 

and/or bath application of (-)-baclofen. Samples were kept frozen at -80°C 

until derivatization and chemical analysis. These experiments were 

performed in the presence of bicuculline methiodide (10 /xM) in order to 

block activity at GABA^ receptors. L-aspartic acid y9-hydroxamate (50 /iM) 

was used in two experiments in order to assess the contribution of neuronal 

and glial uptake to the outflow of glutamate and aspartate from the spinal 

slice. Quantification of endogenous glutamate and aspartate contained in 

the spinal perfusate was achieved by reverse-phase high-performance liquid 

chromatography with o-phthaldialdehyde-2-mercaptoethanol precolumn 

derivatization and fluorimetric detection (Lindroth and Mopper, 1979). The 

chromatography was performed using a Beckman liquid chromatograph with on

line analysis (System Gold). Results are presented as mean ± SEM. 

Statistical significance has been assessed relative to control conditions, 

by use of a paired Student's t test. Levels of significance are indicated 

as follows; "p<0.05; **p<0.01. 

(-)- and (+)-baclofen (CIBA-GEIGY Corp.), bicuculline methiodide 

(Sigma), L-aspartate-^-hydroxamate, tetrodotoxin (Sigma) and 
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tetraethylanunonium (Aldrich Chemical Co.) were applied by bath perfusion in 

known concentrations. 
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RESULTS 

Effects of baclofen on membrane potential and neuronal Input resistance 

A total of 49 neurons In laminae I-IV of the spinal dorsal horn were 

examined In this study. The average resting membrane potential of these 

neurons was -66.7±0.8mV (mean±S.E.M.) and the Input resistance measured by 

hyperpolarlzlng pulses (-0.2 to -0.8 nA of 100 ms duration) 74.3±5.2 Mfl. 

Bath application of (-)-baclofen (5 nM to 10 /iM for 1 mln) produced 

hyperpolarlzatlon (-5.310.5 mV; range; -1 to -15 mV, ) In 43 of 49 dorsal 

horn neurons. A complete recovery of the membrane potential following the 

application of baclofen took 5.9 ± 1.1 (n-20) mln and was observed in a 

majority of tested neurons. The hyperpolarlzatlon to baclofen was a direct 

action on the postsynaptic membrane of a dorsal horn neuron since it could 

be elicited when synaptic transmission was blocked by TTX (n-7; Fig. lA) or 

in a nominally Ca^^-free, 10 mM Mg^*-containing medium (n-2; Fig. IB). In 

13 cells the hyperpolarlzlng response to baclofen (0.1 to 1.0 /iM) was 

followed by a prolonged (2-10 mln) depolarization (1-5 mV). 

We further examined the responsiveness of dorsal horn neurons to the 

(-) and (+) optical Isomers of baclofen and to a GABA^ receptor antagonist, 

blcuculllne. In two dorsal horn neurons, bath application of 100 and 500 

/iM (+)-baclofen produced hyperpolarizations of similar magnitude to those 

evoked by 1 /iM (-)-baclofen (Fig. 2A). This result indicates that the (-) 

isomer was about two orders of magnitude more potent than the (+) isomer in 

causing the hyperpolarlzlng response. Next, we tested the effects of the 

GABAa receptor antagonist, blcuculllne (5 fill), on the baclofen-ellcited 

hyperpolarlzlng response (n-2). As shown In Fig. 2B, the baclofen 
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Fig. 1. (-)-Baclofen hyperpolarizes spinal dorsal horn neurons. A, bath application of (-)-baclofen (10"®M, 
Imin) reversibly hyperpolarized a dorsal horn neuron and depressed spontaneous synaptic activity 
and spike discharges (upper record). In the presence of TTX (3xlO"'M) sodium spikes and synaptic 
activity were eliminated while the baclofen-induced hyperpolarization remained (lower record). B, 
the hyperpolarizing effect of baclofen in another dorsal horn neuron (upper record) persisted when 
the slice was perfused with a nominally zero Ca^*/high-Mg^* (lOmM) solution (lower record). A, 16-
day-old rat, resting membrane potential (Vm) was -69mV. B, 13 day-old rat, Vm, -60 mV. 
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Baclofen-induced hyperpolarization is stereoselective and resistant to bicuculline. A, two 
segments from a continuous record comparing 1 min perfusions of the two isomers of baclofen: (-)-
baclofen, 1 fM for 1 min; (+)-baclofen, 100 fM for 1 min. B, hyperpolarization of a dorsal horn 
neuron caused by (-)-baclofen (1 pM for 1 min) in a control medium (upper record) persisted in the 
presence of (-)-bicuculline methiodide (Bic, 5 /iM) flower record). Perfusion with bicuculline 
started 2 min before the application of (-)-baclofen. A, 14-day-old rat, Vm, -69 mV. B, 24-day-old 
rat, Vm, -71 mV. 
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Fig. 3. Typical change in a current-voltage (I-V) relationship of a dorsal horn neuron elicited by (-)-
baclofen. A, current-voltage relationship before (open circles). during (solid circles) and 4 min 
after (open triangles) application of (-)-baclofen (0.1 /iM for 1 min). Continuous curves were 
fitted by eye through control (o), (-)-baclofen ( ) and recovery ( ) data points. As indicated with 
an arrow, the reversal potential (Vr) for the baclofen response was about - 87 mV. B, 
intracellularly recorded voltage transients elicited by depolarizing (upward) and hyperpolarizing 
(downward) current pulses (-0.8 to 0.2 nA of 100 ms duration) applied in progressive steps across 
the cell soma. 21-day-old rat, Vm, -64 mV. 
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hyperpolarizaclon had a similar time course in the absence and the presence 

of bicuculline. 

Current-voltage relation determinations in control and baclofen-

containing (0.01-1,0 (M) solutions were made in twenty-one neurons. In 18 

(about 86%) of the examined neurons, a small to moderate decrease in 

membrane input resistance (12.6±6.4%; range: 5 to 30%) was recorded during 

the baclofen-induced membrane hyperpolarization (Fig. 3A-B). The observed 

changes in membrane resistance were not solely a result of the presence of 

inward rectification in these neurons (Murase et al., 1986), because a 

significant reduction in the input resistance remained when the membrane 

potential was shifted back to its pre-application value by injecting 

positive d.c. current through the microelectrode. Two other observations 

made can be explained by a reduction in membrane resistance: 1) 

Depolarizing d.c. injections were associated with a decreased probability 

of action potential discharge during perfusion with baclofen-containing 

medium; 2) Anodal break spikes, often observed at the offset points of the 

hyperpolarizing pulses, were usually blocked by baclofen. 

Ionic mechanism 

It has been well documented for hippocampal and neocortical cells that 

the ionic mechanism underlying the baclofen hyperpolarization is an 

increase in conductance to potassium ions (Gâhwiler and Brown, 1985; Inoue 

et al., 1985b; Newberry and Nicoll, 1985; Howe et al., 1987). In spinal 

dorsal horn neurons, the mean reversal potential determined from the 

Intersection point of current-voltage relation plots, measured in normal 
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Fig. 4. Potassium dependence of the baclofen response: dissociation of membrane and synaptic effects. A, 
hyperpolarizing responses of a dorsal horn neuron to repeated applications of baclofen (0.1 fiM for 
1 min) in 3.1- (upper record). 6.2- (second record from the too) and 12.4 mM potassium (third record 
from the top).Recovery (lower record) was recorded 20 min after returning to control medium (3.1 
mM K*). B, I-V curves for a single neuron shown in A, were reconstructed from the records obtained 
in 3.1- (upper eraph). 6.2- (middle eraph) and 12.4-mH-potassium (lower graph). A progressive 
decrease in the slope of the I-V curve occurred in response to baclofen (solid circles) with 
increasing the external potassium concentration. The estimated reversal potential (Vr) shifted 
from about -95 mV in 3,1-, to -80 and -71 mV in 6.2 mM- and 12.4 mM-potassium, respectively. 23-
day-old rat, Vm, -63 mV. C, the effects of baclofen and altering the external potassium 
concentration on the spontaneous EPSPs recorded from the same neuron shown in A. The EPSPs were 
sampled in 3.1-(left records). 6.2-(middle records) and 12.4-mM potassium (ripht records), before 
(a), during peak baclofen response (b) and following the recovery (c), of the baclofen effect. 
Inhibitory effect of baclofen was observed irrespective of the concentrations of potassium used. 
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(3.1 mM K*), baclofen-containing medium, was -95.7±2.6raV (range: -87 to -

107mV, n-7) (Fig. 3A), the finding indicating also the involvement of K+ 

ions. We have examined the effects of altering the extracellular potassium 

concentration on the magnitude and the reversal potential of the baclofen 

response (Fig. 4). Bath application of baclofen (1 pM for 1 min) in the 

control medium (3.1 mM K*) produced a prolonged (over 20 rain) 

hyperpolarization (-8.5 mV) of a dorsal horn neuron (Fig. 4A). Increasing 

the K* concentration to 6.2 and 12.4 mM, markedly reduced and abolished the 

baclofen response, respectively, and caused a depolarizing shift in the 

reversal potential (Fig. 4B). 

Effects of baclofen on sodium- and calcium-dependent action potentials 

It was previously determined that immature rat dorsal horn neurons 

have both sodium- and calcium-dependent action potentials (Murase and 

Randic, 1983). In six of eight neurons examined, baclofen (0.05-1.0 /iM for 

1 min) increased (25-30%) the magnitude of the depolarizing current 

necessary to elicit an action potential (Fig. 5A). However, the threshold 

voltage, or the rise-time and duration of sodium-dependent action 

potentials, were not noticeably changed. Although this effect had a 

similar time course to the above described changes in the membrane 

potential and input resistance, it remained when constant current was 

injected to restore the membrane potential to its control value. 

In response to a prolonged depolarizing current pulse (Is) dorsal horn 

neurons do not fire action potentials at a constant rate. The initial 

series of spikes is usually accompanied by a reduced rate of firing, i.e., 

accommodation (Fig. 5B, left trace). Baclofen markedly increased spike 
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Fig. 5. Baclofen decreases direct excitability and reduces repetitive firing. A, action potentials and 
synaptic potentials caused by intracellular depolarizing current pulses (0.6nA, 10ms) before (left 
trace), during the bath application of baclofen (middle trace) and 6 min after returning to control 
medium (right traced. Baclofen increased the magnitude of the depolarizing current necessary to 
evoke an action potential (middle trace, not illustrated). Although baclofen hyperpolarized the 
neuronal membrane (-4 mV in A, left traced. this change in the direct excitability was not solely 
the consequence of the hyperpolarization, because the effect remained in the cell (A, middle trace) 
when depolarizing d.c. current was injected to shift membrane potential to its pre-baclofen value. 
15 day-old rat, Vm, -63mV. B, examples of repetitive firing in a rat dorsal horn neuron under 
control conditions (left trace), bath-applied baclofen (1 fM for 1 min, middle trace) and 5 min 
after the perfusion with baclofen had been discontinued (right trace). Action potentials were 
evoked by rectangular depolarizing current pulses of 0.8nA and Is duration. The hyperpolarization 
caused by baclofen was annulled by passing direct depolarizing current through the recording 
electrode. 16 day-old rat, Vm, -60mV. 
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Fig. 6. Baclofen reduces the duration of the Ca^^-dependent action potential and afterdepolarization in a 
dorsal horn neuron bathed in a medium containing TTX (3xlO"^M) and TEA (2xlO'^M). Oscilloscope 
records of superimposed Ca^^-dependent action potentials taken at 1 min intervals; prior to (trace 
1), and following (-)-baclofen (1 /iM for 1 min) application (traces 2-5). The baclofen-induced 
hyperpolarization (-5mV) in this cell reduced the spike duration by 30% as determined at half 
maximal amplitude. Stimulus pulse InA, 10 ms. 16 day-old rat, Vm, -55mV. 
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frequency accommodation in a manner similar to that shown in rat 

neocortical neurons (Connors et al., 1988). Thus in 8 of 11 tested 

neurons, baclofen (0.1 to 1 pM for 1 min) enhanced the neuronal 

accommodation of action potential firing (30.0±2.5%; range: 17-70%), as 

shown in Fig. SB. In neurons hyperpolarized by baclofen this effect 

persisted when membrane potential was brought to its control value by 

passing depolarizing d.c. current through the microelectrode. 

When the spinal cord slices were perfused with a control medium 

containing TTX (0.3 fiH) to supress the fast, voltage-dependent sodium 

current, and tetraethylammonium chloride (TEA, 20 mM) to reduce voltage 

dependent potassium current(s), a depolarizing current pulse (0.8 to 1.0 nA 

for 10 ms) applied to the soma elicited high-threshold Ca^*-dependent 

action potential (Hurase and Randic, 1983). Baclofen (1 ;iM for 1 min) 

reduced the duration of Ca^* spikes (41.8±11.8%, n-4; range: 17-80%) 

elicited at membrane potentials ranging from -65 to -55 raV (Fig. 6). No 

significant changes in the dV/dt of the rising phase or the amplitude of 

the Ca^^ spike were recorded. This effect was not associated with an 

increase in threshold of Ca^* spikes. Although the peak effect and its 

recovery had a similar time course to the baclofen-induced 

hyperpolarization, the decrease in the duration of Ca^^ spike was present 

when the resting memebrane potential was re-established by passing adequate 

d.c. current through the microelectrode. 

Depression of excitatory and inhibitory synaptic transmission bv baclofen 

Activation of GABAg receptors in the central nervous system is known 

to depress the amplitude of both excitatory postsynaptic potentials (EPSPs) 
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and inhibitory postsynaptic potentials (IPSPs) (Bowery et al., 1980; Howe 

et al., 1987; Kangrga et al., 1987; Connors et al., 1988). Bath 

application of baclofen (5 nH to 1 pM) to a slice (stimulation site on a 

dorsal root was not exposed to baclofen) caused a marked and prolonged 

decrease in the amplitude (n-10), or abolition (n-5), of mono- and 

polysynaptic EPSPs evoked in dorsal horn neurons by electrical stimulation 

of a lumbar dorsal root (Fig. 7). The depressant effect was present in 

almost all of tested cells (97%) where it infrequently occurred in the 

absence of, or after a minimal increase in membrane potential (<-1.5 mV, 

n-6) and decrease in input resistance. The average reduction in the EPSP 

amplitude, recorded in response to suprathreshold stimulation of a dorsal 

root (1-lOV pulses of 20/is duration), amounted to 64.0±5.2.0X (n-15; 

range: 30 to 100%) of control. Full or partial reversibility of the 

baclofen's depressant effect on EPSPs was demonstrated in the great 

majority of the neurons. Although the maximal depressant effect on the 

excitatory synaptic transmission was usually concomitant with the peak 

membrane hyperpolarization, it often required a longer time to fully 

recover. By increasing the parameters of dorsal root stimulation, the 

EPSPs or dorsal root-evoked action potentials could still be elicited in 

some neurons during the maximal depressant effect of baclofen. The average 

increase in the magnitude of dorsal root stimulation, required to restore 

action potentials or the amplitude of EPSPs to the pre-baclofen values, was 

256.2±46.6% (n-5) and 240.5±14.1 (n-12), respectively. 

In addition, we found that (-)-baclofen abolished fast IPSPs recorded 

in two dorsal horn neurons in response to low intensity electrical 

stimulation of a dorsal root (1-3 V, 20 pS pulse duration), as shown in 
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Fig. 7. Baclofen depresses the intracellularly recorded compound EPSP. Electrical stimulation of the 
dorsal root (8V, 20/is) evoked an EPSP; first trace represents the control response, whereas the 
traces 2-6 represent the responses recorded at 1, 2, 6, 7 and 8 min after the onset of the (-)-
baclofen (1 fM for Imin) application, respectively. The baclofen caused hyperpolarization (-1.5mV) 
in this cell was annulled by passing adequate depolarizing current. Vm, -64 mV. 16-day-old rat. 
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Fig. 8. Baclofen depresses intracellularly recorded fast and slow IPSPSs. A, bath application of baclofen 
(10 nM for 1 min) did not produce any change in the neuronal membrane potential. B, IPSP fupper 
record) evoked by a lumbar dorsal root stimulation (3V, 20 ps) and voltage transients in response 
to rectangular hyperpolarizing current injections (0.2nA, 100ms) flower record') were taken before 
(a), at 1 min (b), 2.5 min (c) , at 7 min with the doubled intensity of stimulation (6V, 20 fis) (d), 
and at 10 min (e) after the application of baclofen. Note the gradual decrease in the amplitude of 
the IPSP following application of baclofen and the increased stimulation threshold (d). 23-day-old 
rat, Vm, -60 mV. Calibration; A, 10 mV, 1 min; B, too record. 10 mV, 20 ms; middle record. 25 mV, 
100 ms; bottom record. 0.2 nA, 100 ms. C, a slow IPSP evoked by high-intensity repetitive 
stimulation (25 V, 0.5 ms, 20 Hz for 2 sec ) of a lumbar dorsal root before (left record). during 
superfusion with baclofen (0.1 fM for about 5 min) (middle record) and 15 min after the offset 
of application of baclofen (right record). 20-day-old rat, Vm, -60 mV. 



www.manaraa.com

(-) - Baclofen 10" M 

a b 

4 
c d 8 

e 

A/  ̂ V--

i_i i_ I i-j~" i_[~ i_r" 

{-) - Baclofen 10^ M 

25 V; 0.5 ms 
20 Hz; 2 s + d.c. 

1 min 



www.manaraa.com

202 

Fig. 8B. Whereas this depressant effect of 0.1 fiH (-)-baclofen was 

associated with membrane hyperpolarization (-6 mV) in one neuron, no 

apparent change in the membrane potential and input resistance was recorded 

in a neuron shown in Fig. 8, where 10 nM (-)-baclofen was applied. The 

IPSP in this neuron could still be evoked during the peak depressant effect 

of (-)-baclofen, by increasing the intensity of dorsal root stimulation to 

200% of the control value. 

In all of 36 tested neurons, (-}-baclofen caused a reduction or 

abolition in the frequency and amplitude of presumptive spontaneous EFSPs 

and IPSPs (Fig. 4C). With lower concentrations of baclofen (<0.1 /iM) the 

supression of the spontaneous EPSPs occurred in the absence of membrane 

hyperpolarization, whereas with higher concentrations (about 1 pM) the 

effect was always associated with membrane hyperpolarization. In addition, 

this effect of baclofen appeared to be resistant to changes in the 

extracellular potassium concentration. As shown in Fig. AA-B, whereas the 

direct hyperpolarization evoked by baclofen in a control medium (3.1 mM K*) 

was markedly depressed by increasing concentration of potassium ions in the 

extracellular medium (to 6.2 and 12.4 mM), the depressant effect of 

baclofen on spontaneous synaptic potentials was not affected (Fig. AC). The 

depression of spontaneous and evoked synaptic activity was observed with 

both isomers of baclofen, and it was bicuculline insensitive. 

Since the most common site responsible for alteration in synaptic 

strength has been thought to be the presynaptic terminal, we have examined 

the possibility of involvement of baclofen in the modulation of the basal 

and the dorsal root stimulation-evoked release of endogenous glutamate and 

aspartate. 
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Presynaptic modulation of the release of endogenous glutamate and aspartate 

The depression of excitatory synaptic transmission observed in the 

present study suggested that (•)-baclofen could reduce the release of 

putative excitatory neurotranmsitters, glutamate and/or aspartate, in the 

rat spinal dorsal horn. To obtain a more direct evidence for possible 

inhibition of glutamate and/or aspartate release by the activation of GABAg 

receptors we have examined the effects of (-)-baclofen (0.1 to 10 pM for 3 

to 6 min) on the spontaneous and dorsal root stimulation-evoked outflow of 

endogenous aspartate and glutamate from the spinal dorsal horn slices. All 

experiments were performed in the presence of bicuculline methiodide (10 

/iM) in the slice perfusate. In two experiments, L-aspartic acid -/9-

hydroxamate was employed in order to block the neuronal and glial uptake of 

the excitatory amino acids. Whereas perfusion of slices with (-)-baclofen 

(0.1 to 10 pM for 3 to 6 min, n-6) did not produce any consistent change in 

the rate of the basal outflow of glutamate and aspartate, the stimulation-

evoked release of both amino acids was completely abolished by baclofen (1 

fM for 6 min, n-5), as Illustrated in Fig. 9. 
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Baclofen blocks the DR stimulation evoked outflow of endogenous glutamate (Glu) and aspartate (Asp) 
from the spinal cord slice. Electrical stimulation (30-35 V, 1 ms, 1 Hz, 180-300 pulses; set of 
arrows) of lumbar dorsal roots (L 4 and 5) in five slices elicited a significant (**p<0.01) Increase 
in the basal outflow of Glu (A) and Asp (B) In the absence of baclofen (solid circles). This 
effect, however, was absent when (-)-baclofen (1 /iM for 6 mln) was present in the perfusing medium. 
Blcuculline roethlodlde (10 /iM) was present in all experiments and L-aspartic acid ̂ -hydroxamate (50 
/tM) in 2 experiments. 31- to 35-day-old rats. 
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DISCUSSION 

In agreement with earlier reports (Jeftinija et al., 1986; Kangrga et 

al., 1987; Âllerton et al,, 1989; Yoshimura and Jessel, 1989; Wang and Dun, 

1990;), our results show that the GABAq receptor agonist, (-)-baclofen, has 

a direct slow hyperpolarizing action on the postsynaptic membrane of both 

superficial and deep spinal dorsal horn neurons. The direct action of (-)-

baclofen in the present study is indicated by the persistence of the 

hyperpolarizing effect in the presence of TTX, or in a nominally zero 

Ca^*/high Mg^* perfusing medium, the procedures known to block the synaptic 

transmission. The baclofen-induced hyperpolarization, and a decrease in 

neuronal input resistance, were insensitive to blockade by bicuculline, the 

finding suggesting an interaction with GABAg receptors (Newberry and 

Nicoll, 1984a,b, 1985; Pinnock 1984; but see Inoue et al., 1985b). It is 

known that the GABAg-mediated responses are most reliably defined by their 

insensitivity to bicuculline and their activation by the specific agonist 

baclofen. The hyperpolarizing action of baclofen in rat spinal dorsal horn 

neurons was more than 100-fold stereoselective; (-)-baclofen being more 

potent than (+)-baclofen. Quantitatively similar data were obtained for 

the stereoselectivity of baclofen actions in other studies (Ault and 

Nadler, 1982; Collins et al., 1982; Inoue et al., 1985b; Howe et al., 

1987). The baclofen-induced hyperpolarization in spinal dorsal horn 

neurons is likely to be mediated by an increase in potassium conductance 

since its reversal potential, and the shift in the reversal potential, are 

modulated by the external potassium concentration similar to reports for 

other central neurons (Inoue et al., 1985; Newberry and Nicoll, 1985; Dutar 
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and Nlcoll, 1988; Allerton et al., 1989). 

Electrical stimulation of dorsal roots, besides fast and slow EPSPs 

(Urban and Randlé, 1984; Gerber et al., 1989), and fast IPSPs, elicits a 

long-lasting IPSP in about 30% of dorsal horn neurons (Urban and Randlé, 

1984; Jeftinija et al., 1985, 1986, 1987). The latter response is 

bicuculline-insensitive and accompanied by a small increase in conductance 

(Jeftinija et al., 1985). Several other CNS structures have a long-lasting 

IPSP (Alger and Nicoll, 1982; Newberry and Nicoll, 1984a,b, 1985; Howe et 

al., 1987; Connors et al., 1988) that resembles in its properties to that 

described in the spinal dorsal hom (Jeftinija et al., 1985). Remarkably 

similar properties of the baclofen-induced hyperpolarization and the 

dorsal-root evoked long-lasting IPSP raise an intriguing possibility that 

in a physiological situation the released GABA acting on GABAg receptors, 

may mediate the long-lasting IPSP, as proposed in other CNS structures 

(Dutar and Nicoll, 1988; Soltesz et al., 1988). Although the role of the 

long-lasting IPSP in spinal dorsal horn function is still obscure, it has 

been Implicated in modulation of excitability and repetitive firing 

behaviour of dorsal horn neurons (Urban and Randlé, 1984). 

Another significant effect of (-)-baclofen observed in the rat spinal 

dorsal hom neurons is the depression of spontaneous and evoked EPSPs and 

fast- and long-lasting IPSPs. These findings are consistent with reported 

actions of baclofen in other regions of the mammalian CNS (Pierau and 

Zimermann, 1973; Fox et al., 1978; Curtis et al., 1981; Blaxter and Carlen, 

1985; Curtis and Malik, 1985; Inoue et al., 1985; Howe et al., 1987; Dutar 

and Nicoll, 1988; Harrison et al., 1988; Allerton et al., 1989; Yoshimura 

and Jessel, 1989; Wang and Dun, 1990). Our study attempted to address the 
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question of the site of inhibitory action of baclofen in the superficial 

spinal dorsal horn. In agreement with the majority of earlier reports, our 

results indicate that the primary site of the depressant action of baclofen 

is presynaptic, although at higher concentrations the increased membrane 

conductance may contribute to the effect of baclofen. Thus baclofen, when 

used at low concentrations, frequently depressed synaptic transmission at a 

time when little or no change in the membrane properties of spinal dorsal 

horn neurons was recorded. Although at higher concentrations the action of 

baclofen to increase potassium conductance of postsynaptic membrane of rat 

dorsal horn neurons is likely to contribute to the baclofen's depression of 

the stimulation-evoked synaptic potentials, the hyperpolarization and the 

depression of synaptic transmission had different time course. Whereas the 

maximal depression of the evoked synaptic potentials coincided with the 

peak hyperpolarizing response to baclofen, the effect on synaptic 

potentials usually had a longer time course and still persisted when the 

hyperpolarization and decreased input resistance were fully recovered. 

Furthermore, the degree of depression of synaptic potentials produced by a 

given dose of baclofen was much greater than could be accounted for by an 

increase in membrane conductance. These results suggest that the sites and 

the cellular mechanisms responsible for the baclofen-caused depression of 

synaptic transmission and hyperpolarization are likely to be distinct. 

In support of the statement that baclofen depresses synaptic 

transmission predominantly by reducing transmitter release from nerve 

fibers presynaptic to dorsal horn neurons, are two major results. 1. The 

dorsal root stimulation-evoked release of glutamate and aspartate from the 

spinal dorsal horn slice was depressed by baclofen. 2. Both inhibitory 
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and excitatory synaptic potentials were abolished by (-)-baclofen In the 

absence of a marked hyperpolarlzatlon and the effect appears to be 

Independent of the external concentration of potassium. 

It is clear that In both peripheral and central neurons, Including 

primary sensory neurons, many GABAg receptors are located on presynaptic 

nerve terminals (Dunlap, 1981; Gapek and Esplln, 1982; Desarmenlen et al., 

1984; Price et al., 1984), and that their activation inhibits transmitter 

release evoked by electrical (Potashner, 1979; Collins et al., 1982) or 

chemical (high-potassium or proveratrldlne) stimulation (Bowery et al., 

1980; Johnston et al., 1980; Collins et al., 1982; Hill and Bowery, 1986; 

Gray and Green, 1987; Zhu and Chuang, 1987; Neal and Shah, 1989; Huston et 

al., 1990). However, the depolarization-evoked release of glutamate and 

aspartate from activated primary afferent fibers has not been examined 

until the present work. Our experiments clearly show that the GABAg 

agonist (-)-baclofen inhibits the dorsal root stimulation-evoked increase 

in the outflow of glutamate and aspartate from the superficial spinal 

dorsal horn slice (Kangrga et al., 1990a,b; Kangrga and Randlé, 1991). An 

apparently greater potency of baclofen to inhibit the excitatory amino acid 

release from the spinal cord slice relative to other CNS structures 

(Potashner, 1979; Johnston et al., 1980; Collins et al., 1982; Kato et al., 

1982; Zhu and Chuang, 1987; Neal and Shah, 1989) may be a consequence of 

the use of electrical stimulation of primary afferent fibers, the procedure 

resulting in the excitatory amino acid release from appropriate pools of 

nerve terminals (Potashner, 1979; Johnston et al., 1980). Since with the 

parameters of dorsal root stimulation used in this study both the low- and 

the high-threshold primary afferent fibers were activated, the specific 
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information regarding the type of primary afferents affected by (-)-

baclofen cannot be deduced. It is conceivable, however, that the 

inhibition of the stimulation-evoked release of glutamate and aspartate by 

baclofen may affect both capsaicin-sensitive and capsaicin-insensitive 

primary afferent sources (Kangrga and Randié, 1991). Functional GABAg 

receptors have been demonstrated on the primary sensory neurons (Dunlap, 

1981, 1984; Dunlap and Fischbach, 1981; Capek and Esplin, 1982; Desarmenien 

et al.. 1984) and in the superficial laminae of the spinal dorsal horn 

(Price et al., 1984). Moreover, the neonatal capsaicin treatment reduces 

the density of GABAg receptors in the superficial dorsal horn by 40 to 50% 

(Price et al., 1984). Further support for the concept that baclofen acts 

primarily at GABAg receptors located on primary sensory neurons should be 

sought out by using spinal dorsal horn synaptosomes. 

In the present experiments we cannot rule out the possibility that 

baclofen is acting on a feedback interneuronal loop. If the inhibition of 

the somatic high-threshold Ca^* spike of the dorsal horn neurons presented 

in this study can be extrapolated to the nerve terminals, the release of 

transmitters from synaptically activated interneurons is very likely 

modulated by baclofen. 

The precise mechanism underlying inhibition of transmitter release by 

(-)-baclofen has yet to be elucidated. There is evidence that (-)-baclofen 

decreases Ca^*-dependent action potential and Ca^* current in the Isolated 

dorsal root ganglia (Desarmenien et al., 1984; Dunlap, 1984; Schlichter et 

al., 1984; Dolphin and Scott, 1986) by acting at G protein-coupled GABAg 

receptors (Dolphin and Scott, 1986, 1987). (-)-baclofen, however, inhibits 

predominantly the N component of the Ca^^ current in the mouse and rat 



www.manaraa.com

212 

cultured DRG neurons (Green and Cottrell, 1988). 
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DISCUSSION 

A more detailed account pertaining to the results presented In this 

thesis Is given In the Results section. This chapter briefly outlines some 

of the major conclusions deriving from the presented work. 

The dorsal horn of the spinal cord Is the site of the first synapse in 

the central nervous system where peripheral somatic and visceral 

Information is processed and Integrated. Whereas considerable experimental 

data have accumulated describing the anatomical and physiological 

characteristics of the afferent projections to the spinal dorsal horn, the 

identity of neurotransmitters and neuromodulators at the primary afferent 

synapse has not been resolved, as yet. Dlcarboxyllc amino acids, glutamate 

and aspartate, have been Implicated in the fast excitatory transmission, 

whereas neuropeptides (i.e., tachykinins, calcltonln-gene-related peptide, 

opioid peptides) are thought to be involved in the modulation of the 

primary afferent transmission. 

In order to test the hypothesis that excitatory amino acids may 

function as neurotransmitters of the primary afferent fibers, this research 

has examined the basal and the dorsal root electrical stimulation-evoked 

release of nine endogenous amino acids, including glutamate and aspartate, 

from the spinal dorsal horn. In addition, the possibility of modulation of 

the basal and the stimulation-evoked release of the nine amino acids by 

tachykinins, CGRP, and by activation of /i-opiold and GABAg receptors, was 

investigated. The experiments utilized the in vitro rat spinal cord slice 

--dorsal root ganglion preparation, high performance liquid chromatography 

and Intracellular recording from dorsal horn neurons. 
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Tachykinins and CGRP enhance the basal and the dorsal root stimulation--

evoked release of endogenous plutamate and aspartate from the rat spinal 

dorsal horn 

The effects of dorsal root stimulation and of neuropeptides substance 

P (SP), neurokinin A (NKA) and calcitonin gene-related peptide (CGRP), on 

the basal and the dorsal root stimulation evoked-release of nine endogenous 

amino acids have been investigated using the rat spinal cord slice-dorsal 

root ganglion preparation. The perfusate was analyzed for amino acids 

aspartate, glutamate, asparagine, glutamine, glycine, gamma-aminobutyric 

acid, serine, threonine and alanine. 

High intensity repetitive electrical stimulation of a lumbar dorsal 

root produced a Ca^^-dependent increase in the basal release of aspartate, 

glutamate, glycine, serine and threonine. Low concentrations of SP (2x10" 

^H) caused a selective increase in the rate of basal release of glutamate, 

whereas with higher concentrations (l-5xlO*®M), in addition to glutamate, 

an increase in the basal release of aspartate was observed. NKA (5xlO~^ to 

10"®M), a related tachykinin that is co expressed with SP in primary 

sensory neurons, enhanced the basal release of glutamate, aspartate and 

glycine. The enhancement of the basal release of glutamate by SP persisted 

in the absence of external Ca^*, but the effect was blocked by (D-Arg^, D-

Pro^, D-Trp^*®, Leu^^)-SP, a SP analogue claimed to be an antagonist of 

synthetic SP. CGRP (lO'^M) caused a significant, largely Ca^"*"-independent 

Increase of the basal release of glutamate and aspartate and a decrease of 

asparagine. SP and CGRP potentiated the electrically-evoked release of 

glutamate and aspartate. Neonatal capsaicin treatment did not markedly 

alter the basal efflux of nine endogenous amino acids from the spinal 
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slices, but it prevented the dorsal root stimulation-evoked release of 

aspartate, glutamate, glycine and threonine. In addition, the capsaicin 

treatment prevented the SP-induced increase in the basal release of 

glutamate, whereas the effect of CGRF was not significantly modified. 

These results indicate that tachykinins (SP and NKA) and CGRP are 

capable of modulating the basal and the electrically-evoked release of 

endogenous glutamate and aspartate and these actions may provide an 

important mechanism by which the peptides contribute to the regulation of 

the primary afferent synaptic transmission. The enhancement of the basal 

and the dorsal root stimulation-evoked release of glutamate and aspartate 

by tachykinins and CGRP may have Important physiological implications for 

strengthening the synaptic connections in the spinal dorsal horn. 

Outflow of endogenous glutamate and aspartate from the rat spinal dorsal 

horn bv activation of low- and high-threshold primary afferent fibers--

modulation by a-oplolds 

Our study attempted to estimate the contribution of different classes 

of primary sensory neurons to the release of putative amino acid 

neurotransmitters glutamate and aspartate. Our approach was to examine the 

possible correlation of release of endogenous glutamate and aspartate with 

stimulation parameters used to activate primary afferent fibers. 

Selective activation of the low-threshold (A/9) primary afferent fibers 

(PAF) resulted in a two-fold Increase in the outflow of endogenous 

aspartate and a smaller Increase in the outflow of glutamate from the rat 

spinal dorsal horn slices into the superfusing medium. The activation of 

both the low (A/9)- and the high-threshold (A5+C) primary afferents elicited 
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an additional Increase In the outflow of Asp and Glu, and a marked increase 

in the Asp/Glu outflow ratio. 

The involvement of the small-diameter primary afferent fibers in the 

release of endogenous glutamate and aspartate in the spinal dorsal horn was 

further examined by using a selective chemical stimulation of a 

subpopulation of the primary sensory neurons. Superfusion of the dorsal 

root ganglia with capsaicin (8-methyl-N-vanyllyl-6-noneamide, 1-10 pM) or 

resiniferatoxin (0.1-1.0 nM), the agents known to selectively activate a 

subpopulation of small primary sensory neurons, resulted in a prolonged 

(10-15 min) two- to three-fold increase in the rate of outflow of glutamate 

and aspartate into the spinal superfusate. 

DAGO (Tyr-D-Ala-Gly-MePhe-Gly-ol-enkephalin), an agonist at p-opioid 

receptors, attenuated the dorsal root stimulation-evoked outflow of Asp and 

Glu in a naloxone-sensitive manner. 

Our results have provided further evidence in support of the 

contention that glutamate and aspartate act as excitatory synaptic 

transmitters in the spinal dorsal horn. The results obtained with 

capsaicin and resiniferatoxin suggest that a population of small primary 

sensory neurons may be an important neuronal source of the depolarization-

evoked release of glutamate and aspartate in the spinal dorsal horn. A 

role for p-opioid receptors in modulation of spinal processing of 

somatosensory information is indicated. 

Effects of phorbol esters on the basal and the dorsal root stimulation--

evoked release of endogenous amino acids In the rat spinal dorsal horn 

Protein kinase C (PKC) has been implicated in the process of 

Interneuronal signalling within the central nervous system. Activation of 



www.manaraa.com

225 

protein kinase C can be mediated directly by phorbol esters in the absence 

of phospholnositlde breakdown. We used phorbol esters as a probe of 

protein kinase C function In modulating the basal and the dorsal root 

stimulation-evoked release of endogenous amino acids in the spinal dorsal 

horn. 

Phorbol esters, 4^-phorbol-12, 13-dibutyrate (PDBu) and 4^-phorbol-12, 

13-diacetate (PDAc), produced a brief increase in the basal and the 

electrically-evoked release of endogenous excitatory (glutamate and 

aspartate) and inhibitory (glycine and GABA) amino acids. In addition the 

rates of release of serine, threonine and alanine were also elevated. By 

contrast, superfusion of the spinal slices with, 4a-phorbol-12, 13-

didecanoate (FDlDec), a phorbol ester analog that does not activate protein 

kinase C, had no effect on the basal release of six endogenous amino acids. 

Enhancement of the basal and the stimulation-evoked release of 

putative excitatory and inhibitory amino acid neurotransmitters caused by 

phorbol esters indicates that protein kinase C may be Involved in the 

presynaptic modulation of the basal and depolarization-evoked 

neurotransmitter release. 

Actions of GABAp-receotor agonist baclofen in the rat spinal dorsal horn 

The actions of a GABAg agonist, (-)-baclofen, on the 

electrophysiological properties of dorsal horn neurons and excitatory and 

inhibitory synaptic transmission in the spinal dorsal horn (laminae I-IV) 

were examined by using Intracellular recordings in spinal cord slice from 

young rats. In addition, the effects of baclofen on the dorsal root 

stimulation-evoked outflow of glutamate and aspartate from the spinal 

dorsal horn was examined by using high performance liquid chromatography 
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(HPLC) with flourimetric detection. 

Superfusion of baclofen (5nM to 10/iM) hyperpolarlzed, in a 

stereoselective and bicuculline-insensltive manner, the majority (86%) of 

tested neurons. The hyperpolarlzation was associated with a decrease in 

membrane resistance and persisted in a nominally zero-Ca^*, lOmMg^*- or a 

TTX-containing solution. Our findings indicate that the hyperpolarizing 

effect of baclofen is probably due to an increase in conductance to 

potassium ions. Baclofen decreased the direct excitability of dorsal horn 

neurons, enhanced accommodation of spike discharge, and reduced the 

duration of Ca^*-dependent action potentials. Baclofen depressed, or 

blocked, both excitatory (EPSPs) and fast and slow inhibitory postsynaptic 

potentials (IPSPs), evoked by electrical stimulation of the dorsal roots. 

Spontaneously occurring EPSPs and IPSPs were also reversibly depressed by 

baclofen. 

Whereas baclofen did not produce any consistent change in the rate of 

the basal outflow of glutamate and aspartate, the stimulation-evoked 

release of the two amino acids was blocked. 

The present results suggest that baclofen, by activating GABAg 

receptors, may modulate spinal afferent processing in the superficial 

dorsal horn by at least two mechanisms: 1. Baclofen depresses excitatory 

synaptic transmission primarily by a presynaptic mechanism involving a 

decrease in the release of excitatory amino acids, and 2. At higher 

concentrations, the hyperpolarlzation and increased membrane conductance 

may contribute to the depressant effect of baclofen on the excitatory and 

the inhibitory synaptic transmission in the rat spinal dorsal horn. 
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